ﻻ يوجد ملخص باللغة العربية
Solar cells based on organic-inorganic metal halide perovskites show efficiencies close to highly-optimized silicon solar cells. However, ion migration in the perovskite films leads to device degradation and impedes large scale commercial applications. We use transient ion-drift measurements to quantify activation energy, diffusion coefficient, and concentration of mobile ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find that their properties change close to the tetragonal-to-orthorhombic phase transition temperature. We identify three migrating ion species which we attribute to the migration of iodide (I-) and methylammonium (MA+). We find that the concentration of mobile MA+ ions is one order of magnitude higher than the one of mobile I- ions, and that the diffusion coefficient of mobile MA+ ions is three orders of magnitude lower than the one for mobile I- ions. We furthermore observe that the activation energy of mobile I- ions (0.29 eV) is highly reproducible for different devices, while the activation energy of mobile MA+ depends strongly on device fabrication. This quantification of mobile ions in MAPbI3 will lead to a better understanding of ion migration and its role in operation and degradation of perovskite solar cells.
We report artifact-free CH3NH3PbI3 optical constants extracted from ultra-smooth perovskite layers without air exposure and assign all the optical transitions in the visible/ultraviolet region unambiguously based on density functional theory (DFT) an
Fundamental electronic processes such as charge-carrier transport and recombination play a critical role in determining the efficiency of hybrid perovskite solar cells. The presence of mobile ions complicates the development of a clear understanding
Twin boundaries (TBs) were identified to show conflicting positive/negative effects on the physical properties of CH3NH3PbI3 perovskite, but their roles on the mechanical properties are pending. Herein, tensile characteristics of a variety of TB-domi
Methylammonium lead iodide (CH3NH3PbI3) based solar cells have shown impressive power conversion efficiencies of above 20%. However, the microscopic mechanism of the high photovoltaic performance is yet to be fully understood. Particularly, the dynam
Deposition of perovskite thin films by antisolvent engineering is one of the most common methods employed in perovskite photovoltaics research. Herein, we report on a general method that allows the fabrication of highly efficient perovskite solar cel