ﻻ يوجد ملخص باللغة العربية
We reveal the nature of propagation and reflection of light in Weyl metals with broken time reversal symmetry, whose electromagnetic properties are described by axion electrodynamics. These Weyl metals turn out to play the role of a chiral prism: An incident monochromatic wave can split into three waves propagating with different wave numbers, depending on its chirality and polarization (right $&$ left circular polarizations and linear polarization along the propagating direction). The helicity of the propagating/reflected light is determined by $textbf{B}_{ext}$ and $textbf{E}_{light}$, where $textbf{B}_{ext}$ is the gradient of the $theta-$field in the axion term given by the applied magnetic field and $textbf{E}_{light}$ is the electric-field component of the incident light. This implies that the direction of the external magnetic field controls the Faraday/Kerr rotation. In particular, we find that the linear polarization of the oscillating electric field along the propagating direction, which cannot occur in conventional metals, arises when Weyl nodes are aligned along the oscillating magnetic field. We evaluate both transmission/reflection coefficients and Faraday/Kerr rotation angles as a function of both an external magnetic field and frequency for various configurations of light propagation. We propose their strong magnetic-field dependencies as one of the fingerprints of the axion electrodynamics.
By studying the rotations of the polarization of light propagating in right and left handed films, with emphasis on the transmission (Faraday effect) and reflec- tions (Kerr effect) of light and through the use of complex values representing the rota
Far infrared magneto-transmission spectroscopy has been used to probe relativistic fermions in highly oriented pyrolytic and natural graphite. Nearly identical transmission spectra of those two materials are obtained, giving the signature of Dirac fe
Recent angle resolved photoemission spectroscopy measurements on strong spin-orbit coupled materials have shown an in-plane orbital texture switch at their respective Dirac points, regardless of whether they are topological insulators or trivial Rash
Using the spin wave approximation, we study the decoherence dynamics of a central spin coupled to an antiferromagnetic environment under the application of an external global magnetic field. The external magnetic field affects the decoherence process
Constructing an effective field theory in terms of doped magnetic impurities (described by an O(3) vector model with a random mass term), itinerant electrons of spin-orbit coupled semiconductors (given by a Dirac theory with a relatively large mass t