ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermoplasmonic Effect of Surface Enhanced Infrared Absorption in Vertical Nanoantenna Arrays

93   0   0.0 ( 0 )
 نشر من قبل Michele Ortolani
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The temperature increase and temperature gradients induced by mid-infrared laser illumination of vertical gold nanoantenna arrays embedded into polymer layers was measured directly with a photothermal expansion nanoscope. Nanoscale thermal hotspot images and local temperature increase spectra were both obtained, the latter by broadly tuning the emission wavelength of a quantum cascade laser. The spectral analysis indicates that plasmon-enhanced mid-infrared vibrations of molecules located in the antenna hotspots are responsible for some of the thermoplasmonic resonances, while Joule heating in gold is responsible for the remaining resonances. In particular, plasmonic dark modes with low scattering cross-section mostly produce surface-enhanced infrared absorption (SEIRA), while bright modes with strong radiation coupling produce Joule heating. The dark modes do not modify the molecular absorption lineshape and the related temperature increase is chemically triggered by the presence of molecules with vibrational fingerprints resonant with the plasmonic dark modes. The bright modes, instead, are prone to Fano interference, display an asymmetric molecular absorption lineshape and generate heat also at frequencies far from molecular vibrations, insofar lacking chemical specificity. For focused mid-infrared laser power of 50 mW, the measured nanoscale temperature increases are in the range of 10 K and temperature gradients reach 5 K/$mu$m in the case of dark modes resonating with strong infrared vibrations such as the C=O bond of poly-methylmethacrylate at 1730 cm$^{-1}$.

قيم البحث

اقرأ أيضاً

Capabilities of highly sensitive surface-enhanced infrared absorption (SEIRA) spectroscopy are demonstrated by exploiting large-area templates ($cm^2$) based on self-organized (SO) nanorod antennas. We engineered highly dense arrays of gold nanorod a ntennas featuring polarization-sensitive localized plasmon resonances, tunable over a broadband near- and mid-infrared (IR) spectrum, in overlap with the so-called functional group window. We demonstrate polarization-sensitive SEIRA activity, homogeneous over macroscopic areas and stable in time, by exploiting prototype self-assembled monolayers of IR-active octadecanthiol (ODT) molecules. The strong coupling between the plasmonic excitation and molecular stretching modes gives rise to characteristic Fano resonances in SEIRA. The SO engineering of the active hotspots in the arrays allows us to achieve signal amplitude improved up to 5.7%. This figure is competitive to the response of lithographic nanoantennas and is stable when the optical excitation spot varies from the micro- to macroscale, thus enabling highly sensitive SEIRA spectroscopy with cost-effective nanosensor devices.
We report that rhomb-shaped metal nanoantenna arrays support multiple plasmonic resonances, making them favorable bio-sensing substrates. Besides the two localized plasmonic dipole modes associated with the two principle axes of the rhombi, the sampl e supports an additional grating-induced surface plasmon polariton resonance. The plasmonic properties of all modes are carefully studied by far-field measurements together with numerical and analytical calculations. The sample is then applied to surface-enhanced Raman scattering measurements. It is shown to be highly efficient since two plasmonic resonances of the structure were simultaneously tuned to coincide with the excitation and the emission wave- length in the SERS experiment. The analysis is completed by measuring the impact of the polarization angle on the SERS signal.
Resonance diffraction in the periodic array of graphene micro-ribbons is theoretically studied following a recent experiment [L. Ju et al, Nature Nanotech. 6, 630 (2011)]. Systematic studies over a wide range of parameters are presented. It is shown that a much richer resonant picture would be observable for higher relaxation times of charge carriers: more resonances appear and transmission can be totally suppressed. The comparison with the absorption cross-section of a single ribbon shows that the resonant features of the periodic array are associated with leaky plasmonic modes. The longest-wavelength resonance provides the highest visibility of the transmission dip and has the strongest spectral shift and broadening with respect to the single-ribbon resonance, due to collective effects.
65 - P. N. Terekhin 2019
The accurate calculation of laser energy absorption during femto- or picosecond laser pulse experiments is very important for the description of the formation of periodic surface structures. On a rough material surface, a crack or a step edge, ultras hort laser pulses can excite surface plasmon polaritons (SPP), i.e. surface plasmons coupled to a laser-electromagnetic wave. The interference of such plasmon wave and the incoming pulse leads to a periodic modulation of the deposited laser energy on the surface of the sample. In the present work, within the frames of a Two Temperature Model we propose the analytical form of the source term, which takes into account SPP excited at a step edge of a dielectric-metal interface upon irradiation of an ultrashort laser pulse at normal incidence. The influence of the laser pulse parameters on energy absorption is quantified for the example of gold. This result can be used for nanophotonic applications and for the theoretical investigation of the evolution of electronic and lattice temperatures and, therefore, of the formation of surfaces with predestined properties under controlled conditions.
We exploited graphene nanoribbons based meta-surface to realize coherent perfect absorption (CPA) in the mid-infrared regime. It was shown that quasi-CPA frequencies, at which CPA can be demonstrated with proper phase modulations, exist for the graph ene meta-surface with strong resonant behaviors. The CPA can be tuned substantially by merging the geometric design of the meta-surface and the electrical tunability of graphene. Furthermore, we found that the graphene nanoribbon meta-surface based CPA is realizable with experimental graphene data. The findings of CPA with graphene meta-surface can be generalized for potential applications in optical detections and signal processing with two-dimensional optoelectronic materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا