ﻻ يوجد ملخص باللغة العربية
Building on Boscas method, we extend to tame ray class groups the results on capitulation of ideals of a number field by composition with abelian extensions of a subfield first studied by Gras. More precisely, for every extension of number fields K/k, where at least one infinite place splits completely, and every squarefree divisor m of K, we prove that there exist infinitely many abelian extensions F/k such that the ray class group mod m of K capitulates in KF. As a consequence we generalize to tame ray class groups the results of Kurihara on triviality of class groups for maximal abelian pro-extensions of totally real number fields.
The Shafarevich-Tate group $W (mathscr{A})$ measures the failure of the Hasse principle for an abelian variety $mathscr{A}$. Using a correspondence between the abelian varieties and the higher dimensional non-commutative tori, we prove that $W (maths
Given an abelian variety over a number field, its Sato-Tate group is a compact Lie group which conjecturally controls the distribution of Euler factors of the L-function of the abelian variety. It was previously shown by Fite, Kedlaya, Rotger, and Su
The text is a synthetic presentation of the state of the knowledge about the capitulation for the class-groups of numbers fields, shortly before the demonstration by Suzuki of the main conjecture on this question.
For any odd prime number $ell$ and any abelian number field F containing the $ell$-th roots of unity, we show that the Stickelberger ideal annihilates the imaginary component of the $ell$-group of logarithmic classes and that its reflection annihilat
A $Gamma$-magic rectangle set $MRS_{Gamma}(a, b; c)$ of order $abc$ is a collection of $c$ arrays $(atimes b)$ whose entries are elements of group $Gamma$, each appearing once, with all row sums in every rectangle equal to a constant $omegain Gamma$