ترغب بنشر مسار تعليمي؟ اضغط هنا

Abelian capitulation of ray class groups

79   0   0.0 ( 0 )
 نشر من قبل Jean-Francois Jaulent
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Building on Boscas method, we extend to tame ray class groups the results on capitulation of ideals of a number field by composition with abelian extensions of a subfield first studied by Gras. More precisely, for every extension of number fields K/k, where at least one infinite place splits completely, and every squarefree divisor m of K, we prove that there exist infinitely many abelian extensions F/k such that the ray class group mod m of K capitulates in KF. As a consequence we generalize to tame ray class groups the results of Kurihara on triviality of class groups for maximal abelian pro-extensions of totally real number fields.



قيم البحث

اقرأ أيضاً

196 - Igor Nikolaev 2020
The Shafarevich-Tate group $W (mathscr{A})$ measures the failure of the Hasse principle for an abelian variety $mathscr{A}$. Using a correspondence between the abelian varieties and the higher dimensional non-commutative tori, we prove that $W (maths cr{A})cong Cl~(Lambda)oplus Cl~(Lambda)$ or $W (mathscr{A})cong left(mathbf{Z}/2^kmathbf{Z}right) oplus Cl_{~mathbf{odd}}~(Lambda)oplus Cl_{~mathbf{odd}}~(Lambda)$, where $Cl~(Lambda)$ is the ideal class group of a ring $Lambda$ associated to the K-theory of the non-commutative tori and $2^k $ divides the order of $Cl~(Lambda)$. The case of elliptic curves with complex multiplication is considered in detail.
Given an abelian variety over a number field, its Sato-Tate group is a compact Lie group which conjecturally controls the distribution of Euler factors of the L-function of the abelian variety. It was previously shown by Fite, Kedlaya, Rotger, and Su therland that there are 52 groups (up to conjugation) that occur as Sato-Tate groups of abelian surfaces over number fields; we show here that for abelian threefolds, there are 410 possible Sato-Tate groups, of which 33 are maximal with respect to inclusions of finite index. We enumerate candidate groups using the Hodge-theoretic construction of Sato-Tate groups, the classification of degree-3 finite linear groups by Blichfeldt, Dickson, and Miller, and a careful analysis of Shimuras theory of CM types that rules out 23 candidate groups; we cross-check this using extensive computations in Gap, SageMath, and Magma. To show that these 410 groups all occur, we exhibit explicit examples of abelian threefolds realizing each of the 33 maximal groups; we also compute moments of the corresponding distributions and numerically confirm that they are consistent with the statistics of the associated L-functions.
The text is a synthetic presentation of the state of the knowledge about the capitulation for the class-groups of numbers fields, shortly before the demonstration by Suzuki of the main conjecture on this question.
For any odd prime number $ell$ and any abelian number field F containing the $ell$-th roots of unity, we show that the Stickelberger ideal annihilates the imaginary component of the $ell$-group of logarithmic classes and that its reflection annihilat es the real componen of the Bertrandias-Payan module. As a consequence we obtain a very simple proof of annihilation results for the so-called wild {e}tale $ell$-kernels of F .
A $Gamma$-magic rectangle set $MRS_{Gamma}(a, b; c)$ of order $abc$ is a collection of $c$ arrays $(atimes b)$ whose entries are elements of group $Gamma$, each appearing once, with all row sums in every rectangle equal to a constant $omegain Gamma$ and all column sums in every rectangle equal to a constant $delta in Gamma$. In this paper we prove that for ${a,b} eq{2^{alpha},2k+1}$ where $alpha$ and $k$ are some natural numbers, a $Gamma$-magic rectangle set MRS$_{Gamma}(a, b;c)$ exists if and only if $a$ and $b$ are both even or and $|Gamma|$ is odd or $Gamma$ has more than one involution. Moreover we obtain sufficient and necessary conditions for existence a $Gamma$-magic rectangle MRS$_{Gamma}(a, b)$=MRS$_{Gamma}(a, b;1)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا