ﻻ يوجد ملخص باللغة العربية
By Delzants theorem, closed symplectic toric manifolds are classified by the images of moment maps. In the case of a generalized Bott manifold, this image is a polytope $P$ combinatorially equivalent to the product of simplices. We compute the Gromov width of generalized Bott manifolds in terms of the defining inequalities of $P$.
We prove that the Gromov width of coadjoint orbits of the symplectic group is at least equal to the upper bound known from the works of Zoghi and Caviedes. This establishes the actual Gromov width. Our work relies on a toric degeneration of a coadjoi
When the cohomology ring of a generalized Bott manifold with $mathbb{Q}$-coefficient is isomorphic to that of a product of complex projective spaces $mathbb{C}P^{n_i}$, the generalized Bott manifold is said to be $mathbb{Q}$-trivial. We find a necess
We use the hyperKaler geometry define an disc-counting invariants with deformable boundary condition on hyperKahler manifolds. Unlike the reduced Gromov-Witten invariants, these invariants can have non-trivial wall-crossing phenomenon and are expecte
Let $(X,omega)$ be a compact symplectic manifold, $L$ be a Lagrangian submanifold and $V$ be a codimension 2 symplectic submanifold of $X$, we consider the pseudoholomorphic maps from a Riemann surface with boundary $(Sigma,partialSigma)$ to the pair
To a direct sum of holomorphic line bundles, we can associate two fibrations, whose fibers are, respectively, the corresponding full flag manifold and the corresponding projective space. Iterating these procedures gives, respectively, a flag Bott tow