ﻻ يوجد ملخص باللغة العربية
We report a detailed study of subpulse drifting in four long period pulsars. These pulsars were observed in the Meterwavelength Single-pulse Polarimetric Emission Survey and the presence of phase modulated subpulse drifting was reported in each case. We have carried out longer duration and more sensitive observations lasting 7000-12000 periods, between frequency range of 306 and 339 MHz. The drifting features were characterised in great detail including the phase variations across the pulse window. In two pulsars J0820$-$1350 and J1720$-$2933 the phases changed steadily across the pulse window. The pulsar J1034$-$3224 has five components. The leading component was very weak and was barely detectable in our observations. The four trailing components showed the presence of subpulse drifting. The phase variations changed in alternate components with a reversal in the sign of the gradient. This phenomenon is known as bi-drifting. The pulsar J1555$-$3134 showed the presence of two distinct peak frequencies of comparable strengths in the fluctuation spectrum. The two peaks did not appear to be harmonically related and were most likely a result of different physical processes. Additionally, the long observations enabled us to explore the temporal variations of the drifting features. The subpulse drifting was largely constant with time but small fluctuations around a mean value was seen.
In this study we propose a classification scheme for the phenomenon of subpulse drifting in pulsars. We have assembled an exhaustive list of pulsars which exhibit subpulse drifting from previously published results as well as recent observations usin
We develop a model for subpulse separation period, $P_2$, taking into account both the apparent motion of the visible point as a function of pulsar phase, $psi$, and the possibility of abrupt jumps between different rotation states in non-corotating
Coherent radio emission in pulsars is excited due to instabilities in a relativistically streaming non-stationary plasma flow, which is generated from sparking discharges in the inner acceleration region (IAR) near the stellar surface. A number of de
We report a detailed observational study of the single pulses from the pulsar J1822$-$2256. The pulsar shows the presence of subpulse drifting, nulling as well as multiple emission modes. During these observations the pulsar existed primarily in two
The phenomenon of subpulse drifting offers unique insights into the emission geometry of pulsars, and is commonly interpreted in terms of a rotating carousel of spark events near the stellar surface. We develop a detailed geometric model for the emis