ترغب بنشر مسار تعليمي؟ اضغط هنا

Modulated magnetic structure in 57Fe doped orthorhombic YbMnO3: a Mossbauer study

60   0   0.0 ( 0 )
 نشر من قبل Pierre Bonville
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the orthorhombic manganites o-RMnO3, where R is a heavy rare earth (R = Gd-Yb), the Mn3+ sublattice is known to undergo two magnetic transitions. The low temperature phase has an antiferromagnetic structure (collinear or elliptical), which has been well characterized by neutron diffraction in most of these compounds. The intermediate phase, occurring in a narrow temperature range (a few K), is documented for R = Gd-Ho as a collinear modulated structure, incommensurate with the lattice spacings. We report here on a 57Fe Mossbauer study of 2% 57Fe doped o-YbMnO3, where the spin only Fe3+ ion plays the role of a magnetic probe. From the analysis of the shape of the magnetic hyperfine Mossbauer spectra, we show that the magnetic structure of the intermediate phase in o-YbMnO3 (38.0 K < T < 41.5 K) is also modulated and incommensurate.

قيم البحث

اقرأ أيضاً

The Fe(1+x)Sb compound has been synthesized close to stoichiometry with x = 0.023(8). The compound was investigated by 57Fe Mossbauer spectroscopy in the temperature range 4.2 - 300 K. The antiferromagnetic ordering temperature was found as 232 K i.e . much higher than for the less stoichiometric material. Regular iron was found to occupy two different positions in proportion 2:1. They differ by the electric quadrupole coupling constants and both of them exhibit extremely anisotropic electric field gradient tensor (EFG) with the asymmetry parameter equal one. The negative component of both EFGs is aligned with the c-axis of the hexagonal unit cell, while the positive component is aligned with the <120> direction. Hence, a model describing deviation from the NiAs P63/mmc symmetry group within Fe-planes has been proposed. Spectra in the magnetically ordered state could be explained by introduction of the incommensurate spin spirals propagating through the iron atoms in the direction of the c-axis with a complex pattern of the hyperfine magnetic fields distributed within a-b plane. Hyperfine magnetic field pattern of spirals due to major regular iron is smoothed by the spin polarized itinerant electrons, while the minor regular iron exhibits hyperfine field pattern characteristic of the highly covalent bonds to the adjacent antimony atoms. The excess interstitial iron orders magnetically at the same temperature as the regular iron, and magnetic moments of these atoms are likely to form two-dimensional spin glass with moments lying in the a-b plane. The upturn of the hyperfine field for minor regular iron and interstitial iron is observed below 80 K. Magneto-elastic effects are smaller than for FeAs, however the recoilless fraction increases significantly upon transition to the magnetically ordered state.
We present a 57Fe Mossbauer spectroscopy study of the two incommensurate magnetic phases in the multiferroic material FeVO4. We devise lineshapes appropriate for planar elliptical and collinear modulated magnetic structures and show that they reprodu ce very well the Mossbauer spectra in FeVO4, in full qualitative agreement with a previous neutron diffraction study. Quantitatively, our spectra provide precise determinations of the characteristics of the elliptical and modulated structures which are in good agreement with the neutron diffraction results. We find that the hyperfine field elliptical modulation persists as T goes to 0, which we attribute to an anisotropy of the hyperfine interaction since a moment modulation is forbidden at T=0 for a spin only ion like Fe3+.
57Fe Mossbauer spectroscopy measurements were performed on a powdered CuFe2Ge2 sample that orders antiferromagnetically at ~ 175 K. Whereas a paramagnetic doublet was observed above the Neel temperature, a superposition of paramagnetic doublet and ma gnetic sextet (in approximately 0.5 : 0.5 ratio) was observed in the magnetically ordered state, suggesting a magnetic structure similar to a double-Q spin density wave with half of the Fe paramagnetic and another half bearing static moment of ~ 0.5 - 1 mu_B. These results call for a re-evaluation of the recent neutron scattering data and band structure calculations.
The experimental study of the modulation of the envelope of spin-echo signals due to internal and external fields is an important spectroscopic tool to detect very small internal magnetic fields. We derive the free induction decay and the frequency s pectrum and amplitude of spin-echo signals for arbitrary orientation of fields with respect to crystalline axis for nuclei in a crystal of orthorhombic symmetry. Results reproduce the results that no modulation should be observed in tetragonal crystals for fields either along the c-axis or any direction in the basal plane and give details of the signal as a function of the orthorhombicity parameter. They are used to discuss recent experimental results and provide guidelines for future experiments.
54 - F. Ye , B. Lorenz , Q. Huang 2007
By combining dielectric, specific heat, and magnetization measurements and high-resolution neutron powder diffraction, we have investigated the thermodynamic and magnetic/structural properties of the metastable orthorhombic perovskite ErMnO_3 prepare d by high-pressure synthesis. The system becomes antiferromagnetically correlated below 42 K and undergoes a lock-in transition at 28 K with propagation wave vector (0,k_b,0), which remains incommensurate at low temperature. The intercorrelation between the magnetic structure and electric properties and the role of the rare earth moment are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا