ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative spin Hall magnetoresistance in antiferromagnetic Cr2O3/Ta bilayer at low temperature region

299   0   0.0 ( 0 )
 نشر من قبل Jun Miao
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the observation of negative spin Hall magnetoresistance (SMR) in antiferromagnetic Cr2O3/Ta bilayers at low temperature. The sign of the SMR signals is changed from positive to negative monotonously from 300 K to 50 K. The change of the signs for SMR is related with the competitions between the surface ferromagnetism and bulky antiferromagnetic of Cr2O3. The surface magnetizations of Cr2O3 (0001) is considered to be dominated at higher temperature, while the bulky antiferromagnetics gets to be robust with decreasing of temperature. The slopes of the abnormal Hall curves coincide with the signs of SMR, confirming variational interface magnetism of Cr2O3 at different temperature. From the observed SMR ratio under 3 T, the spin mixing conductance at Cr2O3/Ta interface is estimated to be 1.12*10^14 (ohm^-1*m^-2), which is comparable to that of YIG/Pt structures and our early results of Cr2O3/W. (Appl. Phys. Lett. 110, 262401 (2017))



قيم البحث

اقرأ أيضاً

117 - Yang Ji , J. Miao , K. K. Meng 2018
The spin Hall magnetoresistance (SMR) and anomalous Hall effect (AHE) are observed in a Cr2O3/Ta structure. The structural and surface morphology of Cr2O3/Ta bilayers have been investigated. Temperature dependence of longitudinal and transverse resis tances measurements confirm the relationship between SMR and AHE signals in Cr2O3/Ta structure. By means of temperature dependent magnetoresistance measurements, the physical origin of SMR in the Cr2O3/Ta structure is revealed, and the contribution to the SMR from the spin current generated by AHE has been proved. The so-called boundary magnetization due to the bulk antiferromagnetic order in Cr2O3 film may be responsible for the relationship of SMR and AHE in the Cr2O3/Ta bilayer.
Antiferromagnetic materials promise improved performance for spintronic applications, as they are robust against external magnetic field perturbations and allow for faster magnetization dynamics compared to ferromagnets. The direct observation of the antiferromagnetic state, however, is challenging due to the absence of a macroscopic magnetization. Here, we show that the spin Hall magnetoresistance (SMR) is a versatile tool to probe the antiferromagnetic spin structure via simple electrical transport experiments by investigating the easy-plane antiferromagnetic insulators $alpha$-Fe2O3 (hematite) and NiO in bilayer heterostructures with a Pt heavy metal top electrode. While rotating an external magnetic field in three orthogonal planes, we record the longitudinal and the transverse resistivities of Pt and observe characteristic resistivity modulations consistent with the SMR effect. We analyze both their amplitude and phase and compare the data to the results from a prototypical collinear ferrimagnetic Y3Fe5O12/Pt bilayer. The observed magnetic field dependence is explained in a comprehensive model, based on two magnetic sublattices and taking into account magnetic field-induced modifications of the domain structure. Our results show that the SMR allows us to understand the spin configuration and to investigate magnetoelastic effects in antiferromagnetic multi-domain materials. Furthermore, in $alpha$-Fe2O3/Pt bilayers, we find an unexpectedly large SMR amplitude of $2.5 times 10^{-3}$, twice as high as for prototype Y3Fe5O12/Pt bilayers, making the system particularly interesting for room-temperature antiferromagnetic spintronic applications.
169 - Hua Wang , Dazhi Hou , Zhiyong Qiu 2017
An electric method for measuring magnetic anisotropy in antiferromagnetic insulators (AFIs) is proposed. When a metallic film with strong spin-orbit interactions, e.g., platinum (Pt), is deposited on an AFI, its resistance should be affected by the d irection of the AFI N eel vector due to the spin Hall magnetoresistance (SMR). Accordingly, the direction of the AFI N eel vector, which is affected by both the external magnetic field and the magnetic anisotropy, is reflected in resistance of Pt. The magnetic field angle dependence of the resistance of Pt on AFI is calculated by consider- ing the SMR, which indicates that the antiferromagnetic anisotropy can be obtained experimentally by monitoring the Pt resistance in strong magnetic fields. Calculations are performed for realistic systems such as Pt/Cr2O3, Pt/NiO, and Pt/CoO.
We investigate the spin Hall magnetoresistance (SMR) at room temperature in thin film heterostructures of antiferromagnetic, insulating, (0001)-oriented alpha-Fe2O3 (hematite) and Pt. We measure their longitudinal and transverse resistivities while r otating an applied magnetic field of up to 17T in three orthogonal planes. For out-of-plane magnetotransport measurements, we find indications for a multidomain antiferromagnetic configuration whenever the field is aligned along the film normal. For in-plane field rotations, we clearly observe a sinusoidal resistivity oscillation characteristic for the SMR due to a coherent rotation of the Neel vector. The maximum SMR amplitude of 0.25% is, surprisingly, twice as high as for prototypical ferrimagnetic Y3Fe5O12/Pt heterostructures. The SMR effect saturates at much smaller magnetic fields than in comparable antiferromagnets, making the alpha-Fe2O3/Pt system particularly interesting for room-temperature antiferromagnetic spintronic applications.
Voltage-controlled spintronic devices utilizing the spin degree of freedom are desirable for future applications, and may allow energy-efficient information processing. Pure spin current can be created by thermal excitations in magnetic systems via t he spin Seebeck effect (SSE). However, controlling such spin currents, only by electrical means, has been a fundamental challenge. Here, we investigate voltage control of the SSE in the antiferromagnetic insulator Cr2O3. We demonstrate that the SSE response generated in this material can be effectively controlled by applying a bias voltage, owing to the sensitivity of the SSE to the orientation of the magnetic sublattices as well as the existence of magnetoelectric couplings in Cr2O3. Our experimental results are explained using a model based on the magnetoelectric effect in Cr2O3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا