ترغب بنشر مسار تعليمي؟ اضغط هنا

The NANOGrav 11-year Data Set: Pulsar-timing Constraints On The Stochastic Gravitational-wave Background

104   0   0.0 ( 0 )
 نشر من قبل Stephen Taylor
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We search for an isotropic stochastic gravitational-wave background (GWB) in the newly released $11$-year dataset from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). While we find no significant evidence for a GWB, we place constraints on a GWB from a population of supermassive black-hole binaries, cosmic strings, and a primordial GWB. For the first time, we find that the GWB upper limits and detection statistics are sensitive to the Solar System ephemeris (SSE) model used, and that SSE errors can mimic a GWB signal. We developed an approach that bridges systematic SSE differences, producing the first PTA constraints that are robust against SSE uncertainties. We thus place a $95%$ upper limit on the GW strain amplitude of $A_mathrm{GWB}<1.45times 10^{-15}$ at a frequency of $f=1$ yr$^{-1}$ for a fiducial $f^{-2/3}$ power-law spectrum, and with inter-pulsar correlations modeled. This is a factor of $sim 2$ improvement over the NANOGrav $9$-year limit, calculated using the same procedure. Previous PTA upper limits on the GWB will need revision in light of SSE systematic uncertainties. We use our constraints to characterize the combined influence on the GWB of the stellar mass-density in galactic cores, the eccentricity of SMBH binaries, and SMBH--galactic-bulge scaling relationships. We constrain cosmic-string tension using recent simulations, yielding an SSE-marginalized $95%$ upper limit on the cosmic string tension of $Gmu < 5.3times 10^{-11}$---a factor of $sim 2$ better than the published NANOGrav $9$-year constraints. Our SSE-marginalized $95%$ upper limit on the energy density of a primordial GWB (for a radiation-dominated post-inflation Universe) is $Omega_mathrm{GWB}(f)h^2<3.4times10^{-10}$.

قيم البحث

اقرأ أيضاً

An ensemble of inspiraling supermassive black hole binaries should produce a stochastic background of very low frequency gravitational waves. This stochastic background is predicted to be a power law, with a spectral index of -2/3, and it should be d etectable by a network of precisely timed millisecond pulsars, widely distributed on the sky. This paper reports a new time slicing analysis of the 11-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) using 34 millisecond pulsars. Methods to flag potential false positive signatures are developed, including techniques to identify responsible pulsars. Mitigation strategies are then presented. We demonstrate how an incorrect noise model can lead to spurious signals, and show how independently modeling noise across 30 Fourier components, spanning NANOGravs frequency range, effectively diagnoses and absorbs the excess power in gravitational-wave searches. This results in a nominal, and expected, progression of our gravitational-wave statistics. Additionally we show that the first interstellar medium event in PSR J1713+0747 pollutes the common red noise process with low-spectral index noise, and use a tailored noise model to remove these effects.
We search for an isotropic stochastic gravitational-wave background (GWB) in the $12.5$-year pulsar timing data set collected by the North American Nanohertz Observatory for Gravitational Waves. Our analysis finds strong evidence of a stochastic proc ess, modeled as a power-law, with common amplitude and spectral slope across pulsars. The Bayesian posterior of the amplitude for an $f^{-2/3}$ power-law spectrum, expressed as the characteristic GW strain, has median $1.92 times 10^{-15}$ and $5%$--$95%$ quantiles of $1.37$--$2.67 times 10^{-15}$ at a reference frequency of $f_mathrm{yr} = 1 ~mathrm{yr}^{-1}$. The Bayes factor in favor of the common-spectrum process versus independent red-noise processes in each pulsar exceeds $10,000$. However, we find no statistically significant evidence that this process has quadrupolar spatial correlations, which we would consider necessary to claim a GWB detection consistent with general relativity. We find that the process has neither monopolar nor dipolar correlations, which may arise from, for example, reference clock or solar system ephemeris systematics, respectively. The amplitude posterior has significant support above previously reported upper limits; we explain this in terms of the Bayesian priors assumed for intrinsic pulsar red noise. We examine potential implications for the supermassive black hole binary population under the hypothesis that the signal is indeed astrophysical in nature.
The mergers of supermassive black hole binaries (SMBHBs) promise to be incredible sources of gravitational waves (GWs). While the oscillatory part of the merger gravitational waveform will be outside the frequency sensitivity range of pulsar timing a rrays (PTAs), the non-oscillatory GW memory effect is detectable. Further, any burst of gravitational waves will produce GW memory, making memory a useful probe of unmodeled exotic sources and new physics. We searched the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11-year data set for GW memory. This dataset is sensitive to very low frequency GWs of $sim3$ to $400$ nHz (periods of $sim11$ yr $-$ $1$ mon). Finding no evidence for GWs, we placed limits on the strain amplitude of GW memory events during the observation period. We then used the strain upper limits to place limits on the rate of GW memory causing events. At a strain of $2.5times10^{-14}$, corresponding to the median upper limit as a function of source sky position, we set a limit on the rate of GW memory events at $<0.4$ yr$^{-1}$. That strain corresponds to a SMBHB merger with reduced mass of $eta M sim 2times10^{10}M_odot$ and inclination of $iota=pi/3$ at a distance of 1 Gpc. As a test of our analysis, we analyzed the NANOGrav 9-year data set as well. This analysis found an anomolous signal, which does not appear in the 11-year data set. This signal is not a GW, and its origin remains unknown.
We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9-year data release from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. We set upper lim its for a GWB from supermassive black hole binaries under power law, broken power law, and free spectral coefficient GW spectrum models. We place a 95% upper limit on the strain amplitude (at a frequency of yr$^{-1}$) in the power law model of $A_{rm gw} < 1.5times 10^{-15}$. For a broken power law model, we place priors on the strain amplitude derived from simulations of Sesana (2013) and McWilliams et al. (2014). We find that the data favor a broken power law to a pure power law with odds ratios of 22 and 2.2 to one for the McWilliams and Sesana prior models, respectively. The McWilliams model is essentially ruled out by the data, and the Sesana model is in tension with the data under the assumption of a pure power law. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. We then place the most stringent limits so far on the energy density of relic GWs, $Omega_mathrm{gw}(f),h^2 < 4.2 times 10^{-10}$, yielding a limit on the Hubble parameter during inflation of $H_*=1.6times10^{-2}~m_{Pl}$, where $m_{Pl}$ is the Planck mass. Our limit on the cosmic string GWB, $Omega_mathrm{gw}(f), h^2 < 2.2 times 10^{-10}$, translates to a conservative limit of $Gmu<3.3times 10^{-8}$ - a factor of 4 better than the joint Planck and high-$l$ CMB data from other experiments.
The detection of binary black hole coalescences by LIGO/Virgo has aroused the interest in primordial black holes (PBHs), because they could be both the progenitors of these black holes and a compelling candidate of dark matter (DM). PBHs are formed s oon after the enhanced scalar perturbations re-enter horizon during radiation dominated era, which would inevitably induce gravitational waves as well. Searching for such scalar induced gravitational waves (SIGWs) provides an elegant way to probe PBHs. We perform the first direct search for the signals of SIGWs accompanying the formation of PBHs in North American Nanohertz Observatory for Gravitational waves (NANOGrav) 11-year data set. No statistically significant detection has been made, and hence we place a stringent upper limit on the abundance of PBHs at $95%$ confidence level. In particular, less than one part in a million of the total DM mass could come from PBHs in the mass range of $[2 times 10^{-3}, 7times 10^{-1}] Msun$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا