ﻻ يوجد ملخص باللغة العربية
The precise manipulation of transverse magnetic domain walls in finite/infinite nanowires with artificial defects under the influence of very short spin-polarized current pulses is investigated. We show that for a classical $3d$ ferromagnet material like Nickel, the exact positioning of the domain walls at room temperature is possible only for pulses with very short rise and fall time that move the domain wall reliably to nearest neighboring pinning position. The influence of the shape of the current pulse and of the transient effects on the phase diagram current-pulse length are discussed. We show that large transient effects appear even when $alpha$=$beta$, below a critical value, due to the domain wall distortion caused by the current pulse shape and the presence of the notches. The transient effects can oppose or amplify the spin-transfer torque (STT), depending on the ratio $beta/alpha$. This enlarges the physical comprehension of the DW motion under STT and opens the route to the DW displacement in both directions with unipolar currents.
Domain walls in ferromagnetic nanowires are potential building-blocks of future technologies such as racetrack memories, in which data encoded in the domain walls are transported using spin-polarised currents. However, the development of energy-effic
The nonlinear dynamics of a transverse domain wall (TDW) in Permalloy and Nickel nanostrips with two artificially patterned pinning centers is studied numerically up to rf frequencies. The phase diagram frequency - driving amplitude shows a rich vari
We report several procedures for the robust nucleation of magnetic domain walls in cylindrical permalloy nanowires. Specific features of the magnetic force microscopy contrast of such soft wires are discussed, with a view to avoid the misinterpretati
Cylindrical nanowires made of soft magnetic materials, in contrast to thin strips, may host domain walls of two distinct topologies. Unexpectedly, we evidence experimentally the dynamic transformation of topology upon wall motion above a field thresh
Recent analytical and numerical work on field driven domain wall propagation in nanowires has shown that for large transverse anisotropy and sufficiently large applied fields the Walker profile becomes unstable before the breakdown field, giving way