ﻻ يوجد ملخص باللغة العربية
We benchmark the ground state energies and the density profiles of atomic repulsive Fermi gases in optical lattices computed via Density Functional Theory (DFT) against the results of diffusion Monte Carlo (DMC) simulations. The main focus is on a half-filled one-dimensional optical lattices, for which the DMC simulations performed within the fixed-node approach provide unbiased results. This allows us to demonstrate that the local spin-density approximation (LSDA) to the exchange-correlation functional of DFT is very accurate in the weak and intermediate interactions regime, and also to underline its limitations close to the strongly-interacting Tonks-Girardeau limit and in very deep optical lattices. We also consider a three dimensional optical lattice at quarter filling, showing also in this case the high accuracy of the LSDA in the moderate interaction regime. The one-dimensional data provided in this study may represent a useful benchmark to further develop DFT methods beyond the LSDA and they will hopefully motivate experimental studies to accurately measure the equation of state of Fermi gases in higher-dimensional geometries.
The ground-state properties of two-component repulsive Fermi gases in two dimensions are investigated by means of fixed-node diffusion Monte Carlo simulations. The energy per particle is determined as a function of the intercomponent interaction stre
This is a review of recent developments in Monte Carlo methods in the field of ultra cold gases. For bosonic atoms in an optical lattice we discuss path integral Monte Carlo simulations with worm updates and show the excellent agreement with cold ato
This Dissertation presents results of a thorough study of ultracold bosonic and fermionic gases in three-dimensional and quasi-one-dimensional systems. Although the analyses are carried out within various theoretical frameworks (Gross-Pitaevskii, Bet
The dynamics of a one-dimensional two-component Fermi gas in the presence of a quasi-periodic optical lattice (OL) is investigated by means of a Density Functional Theory approach. Inspired by the protocol implemented in recent cold-atom experiments,
We present in detail two variants of the lattice Monte Carlo method aimed at tackling systems in external trapping potentials: a uniform-lattice approach with hard-wall boundary conditions, and a non-uniform Gauss-Hermite lattice approach. Using thos