ترغب بنشر مسار تعليمي؟ اضغط هنا

One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment

70   0   0.0 ( 0 )
 نشر من قبل Mohamed Abobeih
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Single electron spins coupled to multiple nuclear spins provide promising multi-qubit registers for quantum sensing and quantum networks. The obtainable level of control is determined by how well the electron spin can be selectively coupled to, and decoupled from, the surrounding nuclear spins. Here we realize a coherence time exceeding a second for a single electron spin through decoupling sequences tailored to its microscopic nuclear-spin environment. We first use the electron spin to probe the environment, which is accurately described by seven individual and six pairs of coupled carbon-13 spins. We develop initialization, control and readout of the carbon-13 pairs in order to directly reveal their atomic structure. We then exploit this knowledge to store quantum states for over a second by carefully avoiding unwanted interactions. These results provide a proof-of-principle for quantum sensing of complex multi-spin systems and an opportunity for multi-qubit quantum registers with long coherence times.



قيم البحث

اقرأ أيضاً

We apply the time-convolutionless (TCL) projection operator technique to the model of a central spin which is coupled to a spin bath via nonuniform Heisenberg interaction. The second-order results of the TCL method for the coherences and populations of the central spin are determined analytically and compared with numerical simulations of the full von Neumann equation of the total system. The TCL approach is found to yield an excellent approximation in the strong field regime for the description of both the short-time dynamics and the long time behavior.
The dynamics of single electron and nuclear spins in a diamond lattice with different 13C nuclear spin concentration is investigated. It is shown that coherent control of up to three individual nuclei in a dense nuclear spin cluster is feasible. The free induction decays of nuclear spin Bell states and single nuclear coherences among 13C nuclear spins are compared and analyzed. Reduction of a free induction decay time T2* and a coherence time T2 upon increase of nuclear spin concentration has been found. For diamond material with depleted concentration of nuclear spin, T2* as long as 30 microseconds and T2 of up to 1.8 ms for the electron spin has been observed. The 13C concentration dependence of T2* is explained by Fermi contact and dipolar interactions with nuclei in the lattice. It has been found that T2 decreases approximately as 1/n, where n is 13C concentration, as expected for an electron spin interacting with a nuclear spin bath.
We investigate the coherence properties of individual nuclear spin quantum bits in diamond [Dutt et al., Science, 316, 1312 (2007)] when a proximal electronic spin associated with a nitrogen-vacancy (NV) center is being interrogated by optical radiat ion. The resulting nuclear spin dynamics are governed by time-dependent hyperfine interaction associated with rapid electronic transitions, which can be described by a spin-fluctuator model. We show that due to a process analogous to motional averaging in nuclear magnetic resonance, the nuclear spin coherence can be preserved after a large number of optical excitation cycles. Our theoretical analysis is in good agreement with experimental results. It indicates a novel approach that could potentially isolate the nuclear spin system completely from the electronic environment.
Single nuclear spins in the solid state have long been envisaged as a platform for quantum computing, due to their long coherence times and excellent controllability. Measurements can be performed via localised electrons, for example those in single atom dopants or crystal defects. However, establishing long-range interactions between multiple dopants or defects is challenging. Conversely, in lithographically-defined quantum dots, tuneable interdot electron tunnelling allows direct coupling of electron spin-based qubits in neighbouring dots. Moreover, compatibility with semiconductor fabrication techniques provides a compelling route to scaling to large numbers of qubits. Unfortunately, hyperfine interactions are typically too weak to address single nuclei. Here we show that for electrons in silicon metal-oxide-semiconductor quantum dots the hyperfine interaction is sufficient to initialise, read-out and control single silicon-29 nuclear spins, yielding a combination of the long coherence times of nuclear spins with the flexibility and scalability of quantum dot systems. We demonstrate high-fidelity projective readout and control of the nuclear spin qubit, as well as entanglement between the nuclear and electron spins. Crucially, we find that both the nuclear spin and electron spin retain their coherence while moving the electron between quantum dots, paving the way to long range nuclear-nuclear entanglement via electron shuttling. Our results establish nuclear spins in quantum dots as a powerful new resource for quantum processing.
Single-shot readout of qubits is required for scalable quantum computing. Nuclear spins are superb quantum memories due to their long coherence times but are difficult to be read out in single shot due to their weak interaction with probes. Here we d emonstrate single-shot readout of a weakly coupled $^{13}$C nuclear spin, which is unresolvable in traditional protocols. We use dynamical decoupling pulse sequences to selectively enhance the entanglement between the nuclear spin and a nitrogen-vacancy center electron spin, tuning the weak measurement of the nuclear spin to a strong, projective one. A nuclear spin coupled to the NV center with strength 330 kHz is read out in 200 ms with fidelity 95.5%. This work provides a general protocol for single-shot readout of weakly coupled qubits and therefore largely extends the range of physical systems for scalable quantum computing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا