ترغب بنشر مسار تعليمي؟ اضغط هنا

Saturation of the hosing instability in quasi-linear plasma accelerators

91   0   0.0 ( 0 )
 نشر من قبل Remi Lehe
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The beam hosing instability is analyzed theoretically for a witness beam in the quasi-linear regime of plasma accelerators. In this regime, the hosing instability saturates, even for a monoenergetic bunch, at a level much less than standard scalings predict. Analytic expressions are derived for the saturation distance and amplitude and are in agreement with numerical results. Saturation is due to the natural head-to-tail variations in the focusing force, including the self-consistent transverse beam loading.

قيم البحث

اقرأ أيضاً

Current models predict the hose instability to crucially limit the applicability of plasma-wakefield accelerators. By developing an analytical model which incorporates the evolution of the hose instability over long propagation distances, this work d emonstrates that the inherent drive-beam energy loss, along with an initial beam energy spread detune the betatron oscillations of beam electrons, and thereby mitigate the instability. It is also shown that tapered plasma profiles can strongly reduce initial hosing seeds. Hence, we demonstrate that the propagation of a drive beam can be stabilized over long propagation distances, paving the way for the acceleration of high-quality electron beams in plasma-wakefield accelerators. We find excellent agreement between our models and particle-in-cell simulations.
We present an investigation for the generation of intense magnetic fields in dense plasmas with an anisotropic electron Fermi-Dirac distribution. For this purpose, we use a new linear dispersion relation for transverse waves in the Wigner-Maxwell den se quantum plasma system. Numerical analysis of the dispersion relation reveals the scaling of the growth rate as a function of the Fermi energy and the temperature anisotropy. The nonlinear saturation level of the magnetic fields is found through fully kinetic simulations, which indicates that the final amplitudes of the magnetic fields are proportional to the linear growth rate of the instability. The present results are important for understanding the origin of intense magnetic fields in dense Fermionic plasmas, such as those in the next generation intense laser-solid density plasma experiments.
The growth and saturation of magnetic fields due to the Weibel instability (WI) have important implications for laboratory and astrophysical plasmas, and this has drawn significant interest recently. Since the WI can generate a large magnetic field f rom no initial field, the maximum magnitudes achieved can have significant consequences for a number of applications. Hence, an understanding of the detailed dynamics driving the nonlinear saturation of the WI is important. This work considers the nonlinear saturation of the WI when counter-streaming populations of initially unmagnetized electrons are perturbed by a magnetic field oriented perpendicular to the direction of streaming. Previous works have found magnetic trapping to be important and connected electron skin depth spatial scales to the nonlinear saturation of the WI. 2 Results presented in this work are consistent with these findings for a high-temperature case. However, using a high-order continuum kinetic simulation tool, this work demonstrates that, when the electron populations are colder, a significant electrostatic potential develops that works with the magnetic field to create potential wells. The electrostatic field develops due to transverse flows induced by the WI, and in some cases is strengthened by a secondary instability. This field plays a key role in saturation of the WI for colder populations. The role of the electrostatic potential in Weibel instability saturation has not been studied in detail previously.
Narrow bandwidth, high energy photon sources can be generated by Thomson scattering of laser light from energetic electrons, and detailed control of the interaction is needed to produce high quality sources. We present analytic calculations of the en ergy-angular spectra and photon yield that parametrize the influences of the electron and laser beam parameters to allow source design. These calculations, combined with numerical simulations, are applied to evaluate sources using conventional scattering in vacuum and methods for improving the source via laser waveguides or plasma channels. We show that the photon flux can be greatly increased by using a plasma channel to guide the laser during the interaction. Conversely, we show that to produce a given number of photons, the required laser energy can be reduced by an order of magnitude through the use of a plasma channel. In addition, we show that a plasma can be used as a compact beam dump, in which the electron beam is decelerated in a short distance, thereby greatly reducing radiation shielding. Realistic experimental errors such as transverse jitter are quantitatively shown to be tolerable. Examples of designs for sources capable of performing nuclear resonance fluorescence and photofission are provided.
88 - Tsunehiko N. Kato 2005
The saturation mechanism of the Weibel instability is investigated theoretically by considering the evolution of currents in numerous cylindrical beams that are generated in the initial stage of the instability. Based on a physical model of the beams , it is shown that the magnetic field strength attains a maximum value when the currents in the beams evolve into the Alfven current and that there exist two saturation regimes. The theoretical prediction of the magnetic field strength at saturation is in good agreement with the results of two-dimensional particle-in-cell simulations for a wide range of initial anisotropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا