ﻻ يوجد ملخص باللغة العربية
Crossfire attack is a recently proposed threat designed to disconnect whole geographical areas, such as cities or states, from the Internet. Orchestrated in multiple phases, the attack uses a massively distributed botnet to generate low-rate benign traffic aiming to congest selected network links, so-called target links. The adoption of benign traffic, while simultaneously targeting multiple network links, makes the detection of the Crossfire attack a serious challenge. In this paper, we propose a framework for early detection of Crossfire attack, i.e., detection in the warm-up period of the attack. We propose to monitor traffic at the potential decoy servers and discuss the advantages comparing with other monitoring approaches. Since the low-rate attack traffic is very difficult to distinguish from the background traffic, we investigate several deep learning methods to mine the spatiotemporal features for attack detection. We investigate Autoencoder, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) Network to detect the Crossfire attack during its warm-up period. We report encouraging experiment results.
The proliferation of IoT devices which can be more easily compromised than desktop computers has led to an increase in the occurrence of IoT based botnet attacks. In order to mitigate this new threat there is a need to develop new methods for detecti
The current paper addresses relevant network security vulnerabilities introduced by network devices within the emerging paradigm of Internet of Things (IoT) as well as the urgent need to mitigate the negative effects of some types of Distributed Deni
False Data Injection (FDI) attacks are a common form of Cyber-attack targetting smart grids. Detection of stealthy FDI attacks is impossible by the current bad data detection systems. Machine learning is one of the alternative methods proposed to det
DDoS attacks are simple, effective, and still pose a significant threat even after more than two decades. Given the recent success in machine learning, it is interesting to investigate how we can leverage deep learning to filter out application layer
Botnets and malware continue to avoid detection by static rules engines when using domain generation algorithms (DGAs) for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect DGA variants t