ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning a sign of magnetoelectric coupling in paramagnetic NH2(CH3)2Al1-xCrx(SO4)*6H2O crystals by metal ion substitution

251   0   0.0 ( 0 )
 نشر من قبل Bohdan Kundys
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid organometallic systems offer a wide range of functionalities, including magnetoelectric interactions. However, the ability to design on-demand ME coupling remains challenging despite a variety of host-guest configurations and ME phases coexistence possibilities. Here, we report the effect of metal-ion substitution on the magnetic and electric properties in the paramagnetic ferroelectric DMAAS crystals. Doing so we are able to induce and even tune a sign of the ME interactions in the paramagnetic ferroelectric state. Both studied samples with 6.5% and 20% of Cr become paramagnetic, contrary to the initial diamagnetic compound. Due to the isomorphous substitution with Cr the ferroelectric phase transition temperature increases nonlinearly, with the shift being larger for the sample with Cr content of 6.5%. A magnetic field applied along the polar c axis increases ferroelectricity for this sample and shifts Tc to higher values, while inverse effects are observed for sample containing 20% of Cr. The ME coupling coefficient of 1.7ns/m found for a crystal with 20% of Cr is among the highest reported up to now. The observed sign change of ME coupling coefficient with a small change in Cr content paves the way for ME coupling engineering.


قيم البحث

اقرأ أيضاً

107 - W. Wang , L.-Q. Yan , J.-Z. Cong 2013
Although the magnetoelectric effects - the mutual control of electric polarization by magnetic fields and magnetism by electric fields, have been intensively studied in a large number of inorganic compounds and heterostructures, they have been rarely observed in organic materials. Here we demonstrate magnetoelectric coupling in a metal-organic framework [(CH3)2NH2]Mn(HCOO)3 which exhibits an order-disorder type of ferroelectricity below 185 K. The magnetic susceptibility starts to deviate from the Curie-Weiss law at the paraelectric-ferroelectric transition temperature, suggesting an enhancement of short-range magnetic correlation in the ferroelectric state. Electron spin resonance study further confirms that the magnetic state indeed changes following the ferroelectric phase transition. Inversely, the ferroelectric polarization can be improved by applying high magnetic fields. We interpret the magnetoelectric coupling in the paramagnetic state in the metal-organic framework as a consequence of the magnetoelastic effect that modifies both the superexchange interaction and the hydrogen bonding.
Fe5-xGeTe2 is a van der Waals material with one of the highest reported bulk Curie temperatures, $T_C$ ~ 310K. In this study, theoretical calculations and experiments are utilized to demonstrate that the magnetic ground state is highly sensitive to l ocal atomic arrangements and the interlayer stacking. Cobalt substitution is found to be an effective way to manipulate the magnetic properties while also increasing the ordering temperature. In particular, cobalt substitution up to 30% enhances $T_C$ and changes the magnetic anisotropy, while approximately 50% cobalt substitution yields an antiferromagnetic state. Single crystal x-ray diffraction evidences a structural change upon increasing the cobalt concentration, with a rhombohedral cell observed in the parent material and a primitive cell observed for ~46% cobalt content relative to iron. First principles calculations demonstrate that it is a combination of high cobalt content and the concomitant change to primitive layer stacking that produces antiferromagnetic order. These results illustrate the sensitivity of magnetism in Fe5-xGeTe2 to composition and structure, and emphasize the important role of structural order/disorder and layer stacking in cleavable magnetic materials.
Understanding the multiferroic coupling is one of the key issues in the feld of multiferroics. As shown here theoretically, the ferromagnetic resonance (FMR) renders possible an access to the magnetoelectric coupling coefficient in composite multifer roics. This we evidence by a detailed analysis and numerical calculations of FMR in an unstrained chain of BaTiO3 in the tetragonal phase in contact with Fe, including the effect of depolarizing field. The spectra of the absorbed power in FMR are found to be sensitive to the orientation of the interface electric polarization and to an applied static electric field. Here we propose a method for measuring the magnetoelectric coupling coefficient by means of FMR.
226 - L. Weymann , L. Bergen , Th. Kain 2020
Violation of time reversal and spatial inversion symmetries has profound consequences for elementary particles and cosmology. Spontaneous breaking of these symmetries at phase transitions gives rise to unconventional physical phenomena in condensed m atter systems, such as ferroelectricity induced by magnetic spirals, electromagnons, non-reciprocal propagation of light and spin waves, and the linear magnetoelectric (ME) effect - the electric polarization proportional to the applied magnetic field and the magnetization induced by the electric field. Here, we report the experimental study of the holmium-doped langasite, Ho$_{x}$La$_{3-x}$Ga$_5$SiO$_{14}$, showing a puzzling combination of linear and highly non-linear ME responses in the disordered paramagnetic state: its electric polarization grows linearly with the magnetic field but oscillates many times upon rotation of the magnetic field vector. We propose a simple phenomenological Hamiltonian describing this unusual behavior and derive it microscopically using the coupling of magnetic multipoles of the rare-earth ions to the electric field.
The effect of Cr doping with nominal compositions Mn2-xCrxO3 (0 less than equal to x less than equal to 0.10) has been undertaken to investigate its effect on structural, magnetic, dielectric and magnetoelectric properties. The Cr doping transformed the room temperature crystal structure from orthorhombic to cubic symmetry. Similar to alpha-Mn2O3, two magnetic transitions have been observed in the Cr doped samples. The effect of Cr doping is significant on the low temperature transition i.e. the lower magnetic transition shifted towards higher temperature (25 K for pristine to 40 K for x=0.10) whereas the high temperature transition decreases slightly with increasing Cr content. A clear frequency independent transition is observed in complex dielectric measurements for all compositions around high temperature magnetic ordering. Interestingly, the magnetodielectric behaviour enhanced enormously approx 21% with Cr substitution as compared to pristine Mn2O3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا