ﻻ يوجد ملخص باللغة العربية
The (2+1)-dimensional [(2+1)d] Fokas system is a natural and simple extension of the nonlinear Schrodinger equation. (see eq. (2) in A. S. Fokas, Inverse Probl. 10 (1994) L19-L22). In this letter, we introduce its PT -symmetric version, which is called the (2 + 1)d nonlocal Fokas system. The N-soliton solutions for this system are obtained by using the Hirota bilinear method whereas the semi-rational solutions are generated by taking the long-wave limit of a part of exponential functions in the general expression of the N-soliton solution. Three kinds of semi-rational solutions, namely (1) a hybrid of rogue waves and periodic line waves, (2) a hybrid of lump and breather solutions, and (3) a hybrid of lump, breather, and periodic line waves are put forward and their rather complicated dynamics is revealed.
In this paper, the partially party-time ($PT$) symmetric nonlocal Davey-Stewartson (DS) equations with respect to $x$ is called $x$-nonlocal DS equations, while a fully $PT$ symmetric nonlocal DSII equation is called nonlocal DSII equation. Three kin
Recently, an integrable system of coupled (2+1)-dimensional nonlinear Schrodinger (NLS) equations was introduced by Fokas (eq. (18) in Nonlinearity 29}, 319324 (2016)). Following this pattern, two integrable equations [eqs.2 and 3] with specific pari
An integrable extension of the Kadomtsev-Petviashvili (KP) and Davey-Stewartson (DS) equations is investigated in this paper.We will refer to this integrable extension as the (4+1)-dimensional Fokas equation. The determinant expressions of soliton, b
The integrable Davey-Stewartson system is a linear combination of the two elementary flows that commute: $mathrm{i} q_{t_1} + q_{xx} + 2qpartial_y^{-1}partial_x (|q|^2) =0$ and $mathrm{i} q_{t_2} + q_{yy} + 2qpartial_x^{-1}partial_y (|q|^2) =0$. In t
This is a continuation of our previous paper arXiv:1904.07924, which is devoted to the construction of integrable semi-discretizations of the Davey-Stewartson system and a $(2+1)$-dimensional Yajima-Oikawa system; in this series of papers, we refer t