ﻻ يوجد ملخص باللغة العربية
While the basic laws of Newtonian mechanics are well understood, explaining a physical scenario still requires manually modeling the problem with suitable equations and estimating the associated parameters. In order to be able to leverage the approximation capabilities of artificial intelligence techniques in such physics related contexts, researchers have handcrafted the relevant states, and then used neural networks to learn the state transitions using simulation runs as training data. Unfortunately, such approaches are unsuited for modeling complex real-world scenarios, where manually authoring relevant state spaces tend to be tedious and challenging. In this work, we investigate if neural networks can implicitly learn physical states of real-world mechanical processes only based on visual data while internally modeling non-homogeneous environment and in the process enable long-term physical extrapolation. We develop a recurrent neural network architecture for this task and also characterize resultant uncertainties in the form of evolving variance estimates. We evaluate our setup to extrapolate motion of rolling ball(s) on bowls of varying shape and orientation, and on arbitrary heightfields using only images as input. We report significant improvements over existing image-based methods both in terms of accuracy of predictions and complexity of scenarios; and report competitive performance with approaches that, unlike us, assume access to internal physical states.
Visual object tracking (VOT) is an essential component for many applications, such as autonomous driving or assistive robotics. However, recent works tend to develop accurate systems based on more computationally expensive feature extractors for bett
Visual motion estimation is a computationally intensive, but important task for sighted animals. Replicating the robustness and efficiency of biological visual motion estimation in artificial systems would significantly enhance the capabilities of fu
Human motion prediction is an increasingly interesting topic in computer vision and robotics. In this paper, we propose a new 2D CNN based network, TrajectoryNet, to predict future poses in the trajectory space. Compared with most existing methods, o
How do we determine whether two or more clothing items are compatible or visually appealing? Part of the answer lies in understanding of visual aesthetics, and is biased by personal preferences shaped by social attitudes, time, and place. In this wor
Human motion prediction aims to forecast future human poses given a historical motion. Whether based on recurrent or feed-forward neural networks, existing learning based methods fail to model the observation that human motion tends to repeat itself,