ﻻ يوجد ملخص باللغة العربية
As a basic task in computer vision, semantic segmentation can provide fundamental information for object detection and instance segmentation to help the artificial intelligence better understand real world. Since the proposal of fully convolutional neural network (FCNN), it has been widely used in semantic segmentation because of its high accuracy of pixel-wise classification as well as high precision of localization. In this paper, we apply several famous FCNN to brain tumor segmentation, making comparisons and adjusting network architectures to achieve better performance measured by metrics such as precision, recall, mean of intersection of union (mIoU) and dice score coefficient (DSC). The adjustments to the classic FCNN include adding more connections between convolutional layers, enlarging decoders after up sample layers and changing the way shallower layers information is reused. Besides the structure modification, we also propose a new classifier with a hierarchical dice loss. Inspired by the containing relationship between classes, the loss function converts multiple classification to multiple binary classification in order to counteract the negative effect caused by imbalance data set. Massive experiments have been done on the training set and testing set in order to assess our refined fully convolutional neural networks and new types of loss function. Competitive figures prove they are more effective than their predecessors.
In this paper, we propose a novel learning based method for automated segmentation of brain tumor in multimodal MRI images, which incorporates two sets of machine -learned and hand crafted features. Fully convolutional networks (FCN) forms the machin
In this paper, we propose a novel learning based method for automated segmenta-tion of brain tumor in multimodal MRI images. The machine learned features from fully convolutional neural network (FCN) and hand-designed texton fea-tures are used to cla
Multiple Sclerosis (MS) is an autoimmune disease that leads to lesions in the central nervous system. Magnetic resonance (MR) images provide sufficient imaging contrast to visualize and detect lesions, particularly those in the white matter. Quantita
Automatic segmentation of the liver and hepatic lesions is an important step towards deriving quantitative biomarkers for accurate clinical diagnosis and computer-aided decision support systems. This paper presents a method to automatically segment l
In this paper, we present a conceptually simple, strong, and efficient framework for fully- and weakly-supervised panoptic segmentation, called Panoptic FCN. Our approach aims to represent and predict foreground things and background stuff in a unifi