ﻻ يوجد ملخص باللغة العربية
The static and dynamic electric-dipole polarizabilities of the $6s^2,^1S_0$ and $6s6p,^3P_1^o$ states of Yb are calculated by using the relativistic ab initio method. Focusing on the red detuning region to the $6s^2,^1S_0-6s6p,^3P_1^o$ transition, we find two magic wavelengths at 1035.7(2) nm and 612.9(2) nm for the $6s^2,^1S_0-6s6p,^3P_1^o, M_J=0$ transition and three magic wavelengthes at 1517.68(6) nm, 1036.0(3) nm and 858(12) nm for the $6s^2,^1S_0-6s6p,^3P_1^o, M_J=pm1$ transitions. Such magic wavelengths are of particular interest for attaining the state-insensitive cooling, trapping, and quantum manipulation of neutral Yb atom.
Precision saturation spectroscopy of the $^{88}{rm Sr} ^1S_0-^3P_1$ is performed in a vapor cell filled with various rare gas including He, Ne, Ar, and Xe. By continuously calibrating the absolute frequency of the probe laser, buffer gas induced coll
The zero crossing of the dynamic differential scalar polarizability of the $S_{1/2}-D_{5/2}$ clock transition in $^{138}$Ba$^+$ has been determined to be $459.1614(28),$THz. Together with previously determined matrix elements and branching ratios, th
Hyperfine induced $1s2s ^1S_0 to 1s^2 ^1S_0$ M1 transition probabilities of He-like ions have been calculated from relativistic configuration interaction wavefunctions including the frequency independent Breit interaction and QED effects. Present res
Measurement of the $^{138}$Ba$^+$ ${}^2S_{1/2} - {}^2D_{5/2}$ clock transition frequency and $D_{5/2}$ Lande $g_J$ factor are reported. The clock transition frequency $ u_{mathrm{Ba}^+}=170,126,432,449,333.31pm(0.39)_mathrm{stat}pm(0.29)_mathrm{sys},
High precision spectroscopy of the $^1S_0$-to-${^1}D_2$ clock transition of $^{176}$Lu is reported. Measurements are performed with Hertz level precision with the accuracy of the hyperfine-averaged frequency limited by the calibration of an active hy