ترغب بنشر مسار تعليمي؟ اضغط هنا

A Dual-phase Xenon TPC for Scintillation and Ionisation Yield Measurements in Liquid Xenon

298   0   0.0 ( 0 )
 نشر من قبل Laura Baudis
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A small-scale, two-phase (liquid/gas) xenon time projection chamber (Xurich II) was designed, constructed and is under operation at the University of Zurich. Its main purpose is to investigate the microphysics of particle interactions in liquid xenon at energies below 50 keV, which are relevant for rare event searches using xenon as target material. Here we describe in detail the detector, its associated infrastructure, and the signal identification algorithm developed for processing and analysing the data. We present the first characterisation of the new instrument with calibration data from an internal 83m-Kr source. The zero-field light yield is 15.0 and 14.0 photoelectrons/keV at 9.4 keV and 32.1 keV, respectively, and the corresponding values at an electron drift field of 1 kV/cm are 10.8 and 7.9 photoelectrons/keV. The charge yields at these energies are 28 and 31 electrons/keV, with the proportional scintillation yield of 24 photoelectrons per one electron extracted into the gas phase, and an electron lifetime of 200 $mu$s. The relative energy resolution, $sigma/E$, is 11.9 % and 5.8 % at 9.4 keV and 32.1 keV, respectively using a linear combination of the scintillation and ionisation signals. We conclude with measurements of the electron drift velocity at various electric fields, and compare these to literature values.



قيم البحث

اقرأ أيضاً

359 - D.E. Fields , R. Gibbons , M. Gold 2020
Scintillation from noble gases is an important technique in particle physics including neutrino beam experiments, neutrino-less double beta-decay and dark matter searches. In liquid argon, the possibility of enhancing the light yield by the addition of a small quantity of xenon (doping at 10-1000 ppm) has been of particular interest. While the pathway for energy transfer between argon and xenon excimers is well known, the time-dependence of the process has not been fully studied in the context of a physics-based model. In this paper we present a model of the energy transfer process together with a fit to xenon-doped argon data. We have measured the diffusion limited rate constant as a function of xenon dopant. We find that the time dependence of the energy transfer is consistent with diffusion-limited reactions. Additionally, we find that commercially obtained argon can have a small xenon component (4 ppm). Our result will facilitate the use of xenon-doped liquid argon in future experiments.
Scintillation and ionisation yields for nuclear recoils in liquid xenon above 10 keVnr (nuclear recoil energy) are deduced from data acquired using broadband Am-Be neutron sources. The nuclear recoil data from several exposures to two sources were co mpared to detailed simulations. Energy-dependent scintillation and ionisation yields giving acceptable fits to the data were derived. Efficiency and resolution effects are treated using a light collection Monte Carlo, measured photomultiplier response profiles and hardware trigger studies. A gradual fall in scintillation yield below ~40 keVnr is found, together with a rising ionisation yield; both are in good agreement with the latest independent measurements. The analysis method is applied to both the most recent ZEPLIN-III data, acquired with a significantly upgraded detector and a precision-calibrated Am-Be source, as well as to the earlier data from the first run in 2008. A new method for deriving the recoil scintillation yield, which includes sub-threshold S1 events, is also presented which confirms the main analysis.
91 - M. Szydagis 2011
A comprehensive model for explaining scintillation yield in liquid xenon is introduced. We unify various definitions of work function which abound in the literature and incorporate all available data on electron recoil scintillation yield. This resul ts in a better understanding of electron recoil, and facilitates an improved description of nuclear recoil. An incident gamma energy range of O(1 keV) to O(1 MeV) and electric fields between 0 and O(10 kV/cm) are incorporated into this heuristic model. We show results from a Geant4 implementation, but because the model has a few free parameters, implementation in any simulation package should be simple. We use a quasi-empirical approach, with an objective of improving detector calibrations and performance verification. The model will aid in the design and optimization of future detectors. This model is also easy to extend to other noble elements. In this paper we lay the foundation for an exhaustive simulation code which we call NEST (Noble Element Simulation Technique).
NEXT is a new experiment to search for neutrinoless double beta decay using a 100 kg radio-pure high-pressure gaseous xenon TPC. The detector requires excellent energy resolution, which can be achieved in a Xe TPC with electroluminescence readout. Ha mamatsu R8520-06SEL photomultipliers are good candidates for the scintillation readout. The performance of this photomultiplier, used as VUV photosensor in a gas proportional scintillation counter, was investigated. Initial results for the detection of primary and secondary scintillation produced as a result of the interaction of 5.9 keV X-rays in gaseous xenon, at room temperature and at pressures up to 3 bar, are presented. An energy resolution of 8.0% was obtained for secondary scintillation produced by 5.9 keV X-rays. No significant variation of the primary scintillation was observed for different pressures (1, 2 and 3 bar) and for electric fields up to 0.8 V cm-1 torr-1 in the drift region, demonstrating negligible recombination luminescence. A primary scintillation yield of 81 pm 7 photons was obtained for 5.9 keV X-rays, corresponding to a mean energy of 72 pm 6 eV to produce a primary scintillation photon in xenon.
The use of xenon-doped liquid argon is a promising alternative for large pure liquid-argon TPCs. Not only xenon-doped liquid argon enhances the light production, mitigating the possible suppression due to impurities, but also it increases the wavelen gth of the scintillation light, enlarging the effective Rayleigh scattering length and improving the detection uniformity. ProtoDUNE Dual-Phase is a 300-ton active volume LAr TPC, a prototype for the Deep Underground Neutrino Experiment (DUNE), a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual-Phase took cosmic muon data at CERN with pure liquid argon and with xenon-doped liquid argon for over a year. The impact of the presence of xenon in the scintillation light and its comparison with the pure liquid argon data will be presented. These results are of interest to any future large LAr TPCs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا