ترغب بنشر مسار تعليمي؟ اضغط هنا

A comprehensive statistical study of metabolic and protein-protein interaction network properties

127   0   0.0 ( 0 )
 نشر من قبل Daniel Gamermann Dr.
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding the mathematical properties of graphs underling biological systems could give hints on the evolutionary mechanisms behind these structures. In this article we perform a complete statistical analysis over thousands of graphs representing metabolic and protein-protein interaction (PPI) networks. First, we investigate the quality of fits obtained for the nodes degree distributions to power-law functions. This analysis suggests that a power-law distribution poorly describes the data except for the far right tail in the case of PPI networks. Next we obtain descriptive statistics for the main graph parameters and try to identify the properties that deviate from the expected values had the networks been built by randomly linking nodes with the same degree distribution. This survey identifies the properties of biological networks which are not solely the result of their degree distribution, but emerge from yet unidentified mechanisms other than those that drive these distributions. The findings suggest that, while PPI networks have properties that differ from their expected values in their randomiz



قيم البحث

اقرأ أيضاً

Here we present ComPPI, a cellular compartment specific database of proteins and their interactions enabling an extensive, compartmentalized protein-protein interaction network analysis (http://ComPPI.LinkGroup.hu). ComPPI enables the user to filter biologically unlikely interactions, where the two interacting proteins have no common subcellular localizations and to predict novel properties, such as compartment-specific biological functions. ComPPI is an integrated database covering four species (S. cerevisiae, C. elegans, D. melanogaster and H. sapiens). The compilation of nine protein-protein interaction and eight subcellular localization data sets had four curation steps including a manually built, comprehensive hierarchical structure of more than 1600 subcellular localizations. ComPPI provides confidence scores for protein subcellular localizations and protein-protein interactions. ComPPI has user-friendly search options for individual proteins giving their subcellular localization, their interactions and the likelihood of their interactions considering the subcellular localization of their interacting partners. Download options of search results, whole proteomes, organelle-specific interactomes and subcellular localization data are available on its website. Due to its novel features, ComPPI is useful for the analysis of experimental results in biochemistry and molecular biology, as well as for proteome-wide studies in bioinformatics and network science helping cellular biology, medicine and drug design.
During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here we review the links between disordered proteins and the associated networks, and describe the consequences of local, mesoscopic and glo bal network disorder on changes in protein structure and dynamics. We introduce a new classification of protein networks into cumulus-type, i.e., those similar to puffy (white) clouds, and stratus-type, i.e., those similar to flat, dense (dark) low-lying clouds, and relate these network types to protein disorder dynamics and to differences in energy transmission processes. In the first class, there is limited overlap between the modules, which implies higher rigidity of the individual units; there the conformational changes can be described by an energy transfer mechanism. In the second class, the topology presents a compact structure with significant overlap between the modules; there the conformational changes can be described by multi-trajectories; that is, multiple highly populated pathways. We further propose that disordered protein regions evolved to help other protein segments reach rarely visited but functionally-related states. We also show the role of disorder in spatial games of amino acids; highlight the effects of intrinsically disordered proteins (IDPs) on cellular networks and list some possible studies linking protein disorder and protein structure networks.
The protein-protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here we char acterize the structural controllability of a large directed human PPI network comprised of 6,339 proteins and 34,813 interactions. This allows us to classify proteins as indispensable, neutral or dispensable, which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a networks control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets.
From the spectral plot of the (normalized) graph Laplacian, the essential qualitative properties of a network can be simultaneously deduced. Given a class of empirical networks, reconstruction schemes for elucidating the evolutionary dynamics leading to those particular data can then be developed. This method is exemplified for protein-protein interaction networks. Traces of their evolutionary history of duplication and divergence processes are identified. In particular, we can identify typical specific features that robustly distinguish protein-protein interaction networks from other classes of networks, in spite of possible statistical fluctuations of the underlying data.
The degree distribution of many biological and technological networks has been described as a power-law distribution. While the degree distribution does not capture all aspects of a network, it has often been suggested that its functional form contai ns important clues as to underlying evolutionary processes that have shaped the network. Generally, the functional form for the degree distribution has been determined in an ad-hoc fashion, with clear power-law like behaviour often only extending over a limited range of connectivities. Here we apply formal model selection techniques to decide which probability distribution best describes the degree distributions of protein interaction networks. Contrary to previous studies this well defined approach suggests that the degree distribution of many molecular networks is often better described by distributions other than the popular power-law distribution. This, in turn, suggests that simple, if elegant, models may not necessarily help in the quantitative understanding of complex biological processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا