ﻻ يوجد ملخص باللغة العربية
Coexistence of a new-type antiferromagnetic (AFM) state, the so-called hedgehog spin-vortex crystal (SVC), and superconductivity (SC) is evidenced by $^{75}$As nuclear magnetic resonance study on single-crystalline CaK(Fe$_{0.951}$Ni$_{0.049}$)$_4$As$_4$. The hedgehog SVC order is clearly demonstrated by the direct observation of the internal magnetic induction along the $c$ axis at the As1 site (close to K) and a zero net internal magnetic induction at the As2 site (close to Ca) below an AFM ordering temperature $T_{rm N}$ $sim$ 52 K. The nuclear spin-lattice relaxation rate 1/$T_1$ shows a distinct decrease below $T_{rm c}$ $sim$ 10 K, providing also unambiguous evidence for the microscopic coexistence. Furthermore, based on the analysis of the 1/$T_1$ data, the hedgehog SVC-type spin correlations are found to be enhanced below $T$ $sim$ 150 K in the paramagnetic state. These results indicate the hedgehog SVC-type spin correlations play an important role for the appearance of SC in the new magnetic superconductor.
Two ordering states, antiferromagnetism and nematicity, have been observed in most iron-based superconductors (SCs). In contrast to those SCs, the newly discovered SC CaK(Fe$_{1-x}$Ni$_x$)$_4$As$_4$ exhibits an antiferromagnetic (AFM) state, called h
Magnetism is widely considered to be a key ingredient of unconventional superconductivity. In contrast to cuprate high-temperature superconductors, antiferromagnetism in Fe-based superconductors (FeSCs) is characterized by a pair of magnetic propagat
Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe ($T_{rm Curie} sim 2.5$ K and $T_{rm SC}$ $sim$ 0.6 K) is reported from $^{59}$Co nuclear quadrupole resonance (NQR). The $^{59}$Co-NQR signal below
The magnetic response of CaK(Fe$_{0.949}$Ni$_{0.051}$)$_4$As$_4$ was investigated by means of the muon-spin rotation/relaxation. The long-range commensurate magnetic order sets in below the N{e}el temperature $T_{rm N}= 50.0(5)$~K. The density-functi
We report $^{57}$Fe-NMR studies on the oxygen-deficient iron (Fe)-based oxypnictide superconductor LaFeAsO$_{0.7}$ ($T_{c}=$ 28 K) enriched by $^{57}$Fe isotope. In the superconducting state, the spin component of $^{57}$Fe-Knight shift $^{57}K$ decr