ترغب بنشر مسار تعليمي؟ اضغط هنا

Enabling Work-conserving Bandwidth Guarantees for Multi-tenant Datacenters via Dynamic Tenant-Queue Binding

246   0   0.0 ( 0 )
 نشر من قبل Zhuotao Liu
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Todays cloud networks are shared among many tenants. Bandwidth guarantees and work conservation are two key properties to ensure predictable performance for tenant applications and high network utilization for providers. Despite significant efforts, very little prior work can really achieve both properties simultaneously even some of them claimed so. In this paper, we present QShare, an in-network based solution to achieve bandwidth guarantees and work conservation simultaneously. QShare leverages weighted fair queuing on commodity switches to slice network bandwidth for tenants, and solves the challenge of queue scarcity through balanced tenant placement and dynamic tenant-queue binding. QShare is readily implementable with existing switching chips. We have implemented a QShare prototype and evaluated it via both testbed experiments and simulations. Our results show that QShare ensures bandwidth guarantees while driving network utilization to over 91% even under unpredictable traffic demands.



قيم البحث

اقرأ أيضاً

59 - Yuxin Ren , Vlad Nitu , Guyue Liu 2019
In the future, computing will be immersed in the world around us -- from augmented reality to autonomous vehicles to the Internet of Things. Many of these smart devices will offer services that respond in real time to their physical surroundings, req uiring complex processing with strict performance guarantees. Edge clouds promise a pervasive computational infrastructure a short network hop away from end devices, but todays operating systems are a poor fit to meet the goals of scalable isolation, dense multi-tenancy, and predictable performance required by these emerging applications. In this paper we present EdgeOS, a micro-kernel based operating system that meets these goals by blending recent advances in real-time systems and network function virtualization. EdgeOS introduces a Featherweight Process model that offers lightweight isolation and supports extreme scalability even under high churn. Our architecture provides efficient communication mechanisms, and low-overhead per-client isolation. To achieve high performance networking, EdgeOS employs kernel bypass paired with the isolation properties of Featherweight Processes. We have evaluated our EdgeOS prototype for running high scale network middleboxes using the Click software router and endpoint applications using memcached. EdgeOS reduces startup latency by 170X compared to Linux processes and over five orders of magnitude compared to containers, while providing three orders of magnitude latency improvement when running 300 to 1000 edge-cloud memcached instances on one server.
Web application performance is heavily reliant on the hit rate of memory-based caches. Current DRAM-based web caches statically partition their memory across multiple applications sharing the cache. This causes under utilization of memory which negat ively impacts cache hit rates. We present Memshare, a novel web memory cache that dynamically manages memory across applications. Memshare provides a resource sharing model that guarantees private memory to different applications while dynamically allocating the remaining shared memory to optimize overall hit rate. Todays high cost of DRAM storage and the availability of high performance CPU and memory bandwidth, make web caches memory capacity bound. Memshares log-structured design allows it to provide significantly higher hit rates and dynamically partition memory among applications at the expense of increased CPU and memory bandwidth consumption. In addition, Memshare allows applications to use their own eviction policy for their objects, independent of other applications. We implemented Memshare and ran it on a week-long trace from a commercial memcached provider. We demonstrate that Memshare increases the combined hit rate of the applications in the trace by an 6.1% (from 84.7% hit rate to 90.8% hit rate) and reduces the total number of misses by 39.7% without affecting system throughput or latency. Even for single-tenant applications, Memshare increases the average hit rate of the current state-of-the-art memory cache by an additional 2.7% on our real-world trace.
Container technologies have been evolving rapidly in the cloud-native era. Kubernetes, as a production-grade container orchestration platform, has been proven to be successful at managing containerized applications in on-premises datacenters. However , Kubernetes lacks sufficient multi-tenant supports by design, meaning in cloud environments, dedicated clusters are required to serve multiple users, i.e., tenants. This limitation significantly diminishes the benefits of cloud computing, and makes it difficult to build multi-tenant software as a service (SaaS) products using Kubernetes. In this paper, we propose Virtual-Cluster, a new multi-tenant framework that extends Kubernetes with adequate multi-tenant supports. Basically, VirtualCluster provides both control plane and data plane isolations while sharing the underlying compute resources among tenants. The new framework preserves the API compatibility by avoiding modifying the Kubernetes core components. Hence, it can be easily integrated with existing Kubernetes use cases. Our experimental results show that the overheads introduced by VirtualCluster, in terms of latency and throughput, is moderate.
In this work, we leverage advances in decentralized identifiers and permissioned blockchains to build a flexible user authentication and authorization mechanism that offers enhanced privacy, achieves fast revocation, and supports distributed policy d ecision points executed in mutually untrusted entities. The proposed solution can be applied in multi-tenant IoT hubs that interconnect diverse IoT silos and enable authorization of guest users, i.e., opportunistic users that have no trust relationship with the system, which has not encountered or known them before.
Blockchain has attracted a broad range of interests from start-ups, enterprises and governments to build next generation applications in a decentralized manner. Similar to cloud platforms, a single blockchain-based system may need to serve multiple t enants simultaneously. However, design of multi-tenant blockchain-based systems is challenging to architects in terms of data and performance isolation, as well as scalability. First, tenants must not be able to read other tenants data and tenants with potentially higher workload should not affect read/write performance of other tenants. Second, multi-tenant blockchain-based systems usually require both scalability for each individual tenant and scalability with number of tenants. Therefore, in this paper, we propose a scalable platform architecture for multi-tenant blockchain-based systems to ensure data integrity while maintaining data privacy and performance isolation. In the proposed architecture, each tenant has an individual permissioned blockchain to maintain their own data and smart contracts. All tenant chains are anchored into a main chain, in a way that minimizes cost and load overheads. The proposed architecture has been implemented in a proof-of-concept prototype with our industry partner, Laava ID Pty Ltd (Laava). We evaluate our proposal in a three-fold way: fulfilment of the identified requirements, qualitative comparison with design alternatives, and quantitative analysis. The evaluation results show that the proposed architecture can achieve data integrity, performance isolation, data privacy, configuration flexibility, availability, cost efficiency and scalability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا