ترغب بنشر مسار تعليمي؟ اضغط هنا

A search for pre- and proto-brown dwarfs in the dark cloud Barnard 30 with ALMA

106   0   0.0 ( 0 )
 نشر من قبل Nuria Huelamo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we present ALMA continuum observations at 880 $mu$m of 30 sub-mm cores previously identified with APEX/LABOCA at 870$mu$m in the Barnard 30 cloud. The main goal is to characterize the youngest and lowest mass population in the cloud. As a result, we report the detection of five (out of 30) spatially unresolved sources with ALMA, with estimated masses between 0.9 and 67 M$_{rm Jup}$. From these five sources, only two show gas emission. The analysis of multi-wavelength photometry from these two objects, namely B30-LB14 and B30-LB19, is consistent with one Class II- and one Class I low-mass stellar object, respectively. The gas emission is consistent with a rotating disk in the case of B30-LB14, and with an oblate rotating envelope with infall signatures in the case of LB19. The remaining three ALMA detections do not have infrared counterparts and can be classified as either deeply embedded objects or as starless cores if B30 members. In the former case, two of them (LB08 and LB31) show internal luminosity upper limits consistent with Very Low Luminosity objects, while we do not have enough information for LB10. In the starless core scenario, and taking into account the estimated masses from ALMA and the APEX/LABOCA cores, we estimate final masses for the central objects in the substellar domain, so they could be classified as pre-BD core candidates.



قيم البحث

اقرأ أيضاً

Context. Chamaeleon II molecular cloud is an active star forming region that offers an excellent opportunity for studying the formation of brown dwarfs in the southern hemisphere. Aims. Our aims are to identify a population of pre- and proto- brown d warfs (5 sigma mass limit threshold of ~0.015 Msun) and provide information on the formation mechanisms of substellar objects. Methods. We performed high sensitivity observations at 870 microns using the LABOCA bolometer at the APEX telescope towards an active star forming region in Chamaeleon II. The data are complemented with an extensive multiwavelength catalogue of sources from the optical to the far-infrared to study the nature of the LABOCA detections. Results. We detect fifteen cores at 870 microns, and eleven of them show masses in the substellar regime. The most intense objects in the surveyed field correspond to the submillimeter counterparts of the well known young stellar objects DK Cha and IRAS 12500-7658. We identify a possible proto-brown dwarf candidate (ChaII-APEX-L) with IRAC emission at 3.6 and 4.5 microns. Conclusions. Our analysis indicates that most of the spatially resolved cores are transient, and that the point-like starless cores in the sub-stellar regime (with masses between 0.016 Msun and 0.066 Msun) could be pre-brown dwarfs cores gravitationally unstable if they have radii smaller than 220 AU to 907 AU (1.2 to 5 at 178 pc) respectively for different masses. ALMA observations will be the key to reveal the energetic state of these pre-brown dwarfs candidates.
We present the results of a search for companions to young brown dwarfs in the Taurus and Chamaeleon I star forming regions (1/2-3 Myr). We have used WFPC2 on board HST to obtain F791W and F850LP images of 47 members of these regions that have spectr al types of M6-L0 (0.01-0.1 Msun). An additional late-type member of Taurus, FU Tau (M7.25+M9.25), was also observed with adaptive optics at Keck Observatory. We have applied PSF subtraction to the primaries and have searched the resulting images for objects that have colors and magnitudes that are indicative of young low-mass objects. Through this process, we have identified promising candidate companions to 2MASS J04414489+2301513 (rho=0.105/15 AU), 2MASS J04221332+1934392 (rho=0.05/7 AU), and ISO 217 (rho=0.03/5 AU). We reported the discovery of the first candidate in a previous study, showing that it has a similar proper motion as the primary through a comparison of astrometry measured with WFPC2 and Gemini adaptive optics. We have collected an additional epoch of data with Gemini that further supports that result. By combining our survey with previous high-resolution imaging in Taurus, Chamaeleon, and Upper Sco (10 Myr), we measure binary fractions of 14/93 = 0.15+0.05/-0.03 for M4-M6 (0.1-0.3 Msun) and 4/108 = 0.04+0.03/-0.01 for >M6 (<0.1 Msun) at separations of >10 AU. Given the youth and low density of these three regions, the lower binary fraction at later types is probably primordial rather than due to dynamical interactions among association members. The widest low-mass binaries (>100 AU) also appear to be more common in Taurus and Chamaeleon than in the field, which suggests that the widest low-mass binaries are disrupted by dynamical interactions at >10 Myr, or that field brown dwarfs have been born predominantly in denser clusters where wide systems are disrupted or inhibited from forming.
Exoplanetary science has reached a historic moment. The James Webb Space Telescope will be capable of probing the atmospheres of rocky planets, and perhaps even search for biologically produced gases. However this is contingent on identifying suitabl e targets before the end of the mission. A race therefore, is on, to find transiting planets with the most favorable properties, in time for the launch. Here, we describe a realistic opportunity to discover extremely favorable targets - rocky planets transiting nearby brown dwarfs - using the Spitzer Space Telescope as a survey instrument. Harnessing the continuous time coverage and the exquisite precision of Spitzer in a 5,400 hour campaign monitoring nearby brown dwarfs, we will detect a handful of planetary systems with planets as small as Mars. The survey we envision is a logical extension of the immense progress that has been realized in the field of exoplanets and a natural outcome of the exploration of the solar neighborhood to map where the nearest habitable rocky planets are located (as advocated by the 2010 Decadal Survey). Our program represents an essential step towards the atmospheric characterization of terrestrial planets and carries the compelling promise of studying the concept of habitability beyond Earth-like conditions. In addition, our photometric monitoring will provide invaluable observations of a large sample of nearby brown dwarfs situated close to the M/L transition. This is why, we also advocate an immediate public release of the survey data, to guarantee rapid progress on the planet search and provide a treasure trove of data for brown dwarf science.
Dust grains play an important role in the synthesis of molecules in the interstellar medium, from the simplest species to complex organic molecules. How some of these solid-state molecules are converted into gas-phase species is still a matter of deb ate. Our aim is to directly compare ice and gas abundances of methanol (CH$_3$OH) and CO, and to investigate the relationship between ice and gas in low-mass protostellar envelopes. We present Submillimeter Array and Atacama Pathfinder EXperiment observations of gas-phase CH$_3$OH and CO towards the multiple protostellar system IRAS05417+0907 located in the B35A cloud. We use archival AKARI ice data toward the same target to calculate CH$_3$OH and CO gas-to-ice ratios. The CO isotopologues emissions are extended, whereas the CH$_3$OH emission is compact and traces the giant outflow emanating from IRAS05417+0907. A discrepancy between submillimeter dust emission and H$_2$O ice column density is found for B35A$-$4 and B35A$-$5, similar to what has previously been reported. B35A$-$2 and B35A$-$3 are located where the submillimeter dust emission peaks and show H$_2$O column densities lower than for B35A$-$4. The difference between the submillimeter continuum emission and the infrared H$_2$O ice observations suggests that the distributions of dust and H$_2$O ice differ around the young stellar objects in this dense cloud. The reason for this may be that the sources are located in different environments resolved by the interferometric observations: B35A$-$2, B35A$-$3 and in particular B35A$-$5 are situated in a shocked region plausibly affected by sputtering and heating impacting the submillimeter dust emission pattern, while B35A$-$4 is situated in a more quiescent part of the cloud. Gas and ice maps are essential to connect small-scale variations in the ice composition with large-scale astrophysical phenomena probed by gas observations.
The early evolutionary stage of brown dwarfs are not very well characterized, specially during the embedded phase. To gain insight into the dominant formation mechanism of very low-mass objects and brown dwarfs, we conducted deep observations at 870$ mu$m with the LABOCA bolometer at the APEX telescope. Our goal was to identify young sub-mm sources in the Barnard 30 dark cloud. We complemented these data with multi-wavelength observations from the optical to the far-IR and. As a result, we have identified 34 submm sources and a substantial number of possible and probable Barnard 30 members within each individual APEX/LABOCA beam. They can be classified in three distinct groups. First, 15 out of these 34 have a clear optical or IR counterpart to the submm peak and nine of them are potential proto-BDs candidates. Moreover, a substantial number of them could be multiple systems. A second group of 13 sources comprises candidate members with significant infrared excesses located away from the central submm emission. All of them include brown dwarf candidates, some displaying IR excess, but their association with submm emission is unclear. In addition, we have found six starless cores and, based on the total dust mass estimate, three might be pre-substellar (or pre-BDs) cores. Finally, the complete characterization of our APEX/LABOCA sources, focusing on those detected at 24 and/or 70 $mu$m, indicates that in our sample of 34 submm sources there are, at least: two WTTs, four CTTs, five young stellar objects (YSOs), eight proto-BD candidates (with another three dubious cases), and one Very Low Luminosity object (VeLLO).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا