ﻻ يوجد ملخص باللغة العربية
In order to improve the theoretical prediction of the electron anomalous magnetic moment $a_e$ we have carried out a new numerical evaluation of the 389 integrals of Set V, which represent 6,354 Feynman vertex diagrams without lepton loops. During this work, we found that one of the integrals, called $X024$, was given a wrong value in the previous calculation due to an incorrect assignment of integration variables. The correction of this error causes a shift of $-1.25$ to the Set~V contribution, and hence to the tenth-order universal (i.e., mass-independent) term $ A_1^{(10)}$. The previous evaluation of all other 388 integrals is free from errors and consistent with the new evaluation. Combining the new and the old (excluding $X024$) calculations statistically, we obtain $7.606~(192) (alpha/pi)^5$ as the best estimate of the Set V contribution. Including the contribution of the diagrams with fermion loops, the improved tenth-order universal term becomes $A_1^{(10)}=6.678~(192)$. Adding hadronic and electroweak contributions leads to the theoretical prediction $a_e (text{theory}) =1~159~652~182.032~(720)times 10^{-12}$. From this and the best measurement of $a_e$, we obtain the inverse fine-structure constant $alpha^{-1}(a_e) = 137.035~999~1491~(331)$. The theoretical prediction of the muon anomalous magnetic moment is also affected by the update of QED contribution and the new value of $alpha$, but the shift is much smaller than the theoretical uncertainty.
This paper presents a detailed account of evaluation of the electron anomalous magnetic moment a_e which arises from the gauge-invariant set, called Set V, consisting of 6354 tenth-order Feynman diagrams without closed lepton loops. The latest value
This paper reports the tenth-order contributions to the g-2 of the electron a_e and those of the muon a_mu from the gauge-invariant Set II(c), which consists of 36 Feynman diagrams, and Set II(d), which consists of 180 Feynman diagrams. Both sets are
This paper reports the tenth-order QED contribution to the lepton g-2 from the gauge-invariant set, called Set III(c), which consists of 390 Feynman vertex diagrams containing an internal fourth-order light-by-light-scattering subdiagram. The mass-in
The current $3.5sigma$ discrepancy between experimental and Standard Model determinations of the anomalous magnetic moment of the muon $a_mu=(g-2)/2$ can only be extended to the discovery $5sigma$ regime through a reduction of both experimental and t
We apply the Basis Light-Front Quantization (BLFQ) approach to the Hamiltonian field theory of Quantum Electrodynamics (QED) in free space. We solve for the mass eigenstates corresponding to an electron interacting with a single photon in light-front