ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport and quantum coherence in graphene rings: Aharonov-Bohm oscillations, Klein tunneling and particle localization

327   0   0.0 ( 0 )
 نشر من قبل Holger Fehske
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Simulating quantum transport through mesoscopic, ring-shaped graphene structures, we address various quantum coherence and interference phenomena. First, a perpendicular magnetic field, penetrating the graphene ring, gives rise to Aharonov-Bohm oscillations in the conductance as a function of the magnetic flux, on top of the universal conductance fluctuations. At very high fluxes the interference gets suppressed and quantum Hall edge channels develop. Second, applying an electrostatic potential to one of the ring arms, $nnn$- or $npn$-junctions can be realized with particle transmission due to normal tunneling or Klein tunneling. In the latter case the Aharonov-Bohm oscillations weaken for smooth barriers. Third, if potential disorder comes in to play, both Aharonov-Bohm and Klein tunneling effects rate down, up to the point where particle localization sets in.



قيم البحث

اقرأ أيضاً

73 - M. Barbier , P. Gaspard 2020
The consequences of microreversibility for the linear and nonlinear transport properties of systems subjected to external magnetic fields are systematically investigated in Aharonov-Bohm rings connected to two, three, and four terminals. Within the i ndependent electron approximation, the cumulant generating function, which fully specifies the statistics of the nonequilibrium currents, is expressed in terms of the scattering matrix of these circuits. The time-reversal symmetry relations up to the third responses of the currents and the fourth cumulants are analytically investigated and numerically tested as a function of the magnetic flux. The validity of such relations is thus firmly confirmed in this class of open quantum systems.
We analyze theoretically the electronic properties of Aharonov-Bohm rings made of graphene. We show that the combined effect of the ring confinement and applied magnetic flux offers a controllable way to lift the orbital degeneracy originating from t he two valleys, even in the absence of intervalley scattering. The phenomenon has observable consequences on the persistent current circulating around the closed graphene ring, as well as on the ring conductance. We explicitly confirm this prediction analytically for a circular ring with a smooth boundary modelled by a space-dependent mass term in the Dirac equation. This model describes rings with zero or weak intervalley scattering so that the valley isospin is a good quantum number. The tunable breaking of the valley degeneracy by the flux allows for the controlled manipulation of valley isospins. We compare our analytical model to another type of ring with strong intervalley scattering. For the latter case, we study a ring of hexagonal form with lattice-terminated zigzag edges numerically. We find for the hexagonal ring that the orbital degeneracy can still be controlled via the flux, similar to the ring with the mass confinement.
170 - C. De Beule , F. Dominguez , 2020
We investigate transport in the network of valley Hall states that emerges in minimally twisted bilayer graphene under interlayer bias. To this aim, we construct a scattering theory that captures the network physics. In the absence of forward scatter ing, symmetries constrain the network model to a single parameter that interpolates between one-dimensional chiral zigzag modes and pseudo-Landau levels. Moreover, we show how the coupling of zigzag modes affects magnetotransport. In particular, we find that scattering between parallel zigzag channels gives rise to Aharonov-Bohm oscillations that are robust against temperature, while coupling between zigzag modes propagating in different directions leads to Shubnikov-de Haas oscillations that are smeared out at finite temperature.
Topological insulators have an insulating bulk but a metallic surface. In the simplest case, the surface electronic structure of a 3D topological insulator is described by a single 2D Dirac cone. A single 2D Dirac fermion cannot be realized in an iso lated 2D system with time-reversal symmetry, but rather owes its existence to the topological properties of the 3D bulk wavefunctions. The transport properties of such a surface state are of considerable current interest; they have some similarities with graphene, which also realizes Dirac fermions, but have several unique features in their response to magnetic fields. In this review we give an overview of some of the main quantum transport properties of topological insulator surfaces. We focus on the efforts to use quantum interference phenomena, such as weak anti-localization and the Aharonov-Bohm effect, to verify in a transport experiment the Dirac nature of the surface state and its defining properties. In addition to explaining the basic ideas and predictions of the theory, we provide a survey of recent experimental work.
135 - G. Y. Chen , Y. N. Chen , 2006
We propose a theoretical model to study the single-electron spectra of the concentric quantum double ring fabricated lately by self-assembled technique. Exact diagonalization method is employed to examine the Aharonov-Bohm effect in the concentric do uble ring. It is found the appearance of the AB oscillation in total energy depends on the strength of the screened potential. Variations of the energy spectra with the presence of coulomb impurities located at inner or outer ring are also investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا