ترغب بنشر مسار تعليمي؟ اضغط هنا

Prior Distributions for the Bradley-Terry Model of Paired Comparisons

202   0   0.0 ( 0 )
 نشر من قبل John T. Whelan
 تاريخ النشر 2017
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف John T. Whelan




اسأل ChatGPT حول البحث

The Bradley-Terry model assigns probabilities for the outcome of paired comparison experiments based on strength parameters associated with the objects being compared. We consider different proposed choices of prior parameter distributions for Bayesian inference of the strength parameters based on the paired comparison results. We evaluate them according to four desiderata motivated by the use of inferred Bradley-Terry parameters to rate teams on the basis of outcomes of a set of games: invariance under interchange of teams, invariance under interchange of winning and losing, normalizability and invariance under elimination of teams. We consider various proposals which fail to satisfy one or more of these desiderata, and illustrate two proposals which satisfy them. Both are one-parameter independent distributions for the logarithms of the team strengths: 1) Gaussian and 2) Type III generalized logistic.



قيم البحث

اقرأ أيضاً

We propose a time-varying generalization of the Bradley-Terry model that allows for nonparametric modeling of dynamic global rankings of distinct teams. We develop a novel estimator that relies on kernel smoothing to pre-process the pairwise comparis ons over time and is applicable in sparse settings where the Bradley-Terry may not be fit. We obtain necessary and sufficient conditions for the existence and uniqueness of our estimator. We also derive time-varying oracle bounds for both the estimation error and the excess risk in the model-agnostic setting where the Bradley-Terry model is not necessarily the true data generating process. We thoroughly test the practical effectiveness of our model using both simulated and real world data and suggest an efficient data-driven approach for bandwidth tuning.
Optimal design theory for nonlinear regression studies local optimality on a given design space. We identify designs for the Bradley--Terry paired comparison model with small undirected graphs and prove that every saturated D-optimal design is repres ented by a path. We discuss the case of four alternatives in detail and derive explicit polynomial inequality descriptions for optimality regions in parameter space. Using these regions, for each point in parameter space we can prescribe a D-optimal design.
When conducting a paired $2times2$ crossover design, each subject is paired with another subject with similar characteristics. The pair is then randomized to the same sequence of two treatments. That is, the two subjects receive the first experimenta l treatment, and then they cross over and receive the other experimental treatment(s). The paired $2times2$ crossover design that was used in the Beta Adrenergic Response by GEnotype (BARGE) Study conducted by the National Heart, Lung and Blood Institutes Asthma Clinical Research Network (ACRN) has been described elsewhere. When the data arising from such a design are balanced and complete -- or if at least any missingness that occurs is at random -- general linear mixed-effects model methods can be used to analyze the data. In this paper, we present a method based on a pattern-mixture model for analyzing the data arising from a paired $2times2$ crossover design when some of the data are missing in a non-ignorable fashion. Because of its inherent scientific interest, we focus our particular attention on the estimation of the treatment-by-type of subject interaction term. Finally, we illustrate the pattern-mixture model methods described in this paper on the data arising from the BARGE study.
Identifying the most deprived regions of any country or city is key if policy makers are to design successful interventions. However, locating areas with the greatest need is often surprisingly challenging in developing countries. Due to the logistic al challenges of traditional household surveying, official statistics can be slow to be updated; estimates that exist can be coarse, a consequence of prohibitive costs and poor infrastructures; and mass urbanisation can render manually surveyed figures rapidly out-of-date. Comparative judgement models, such as the Bradley--Terry model, offer a promising solution. Leveraging local knowledge, elicited via comparisons of different areas affluence, such models can both simplify logistics and circumvent biases inherent to house-hold surveys. Yet widespread adoption remains limited, due to the large amount of data existing approaches still require. We address this via development of a novel Bayesian Spatial Bradley--Terry model, which substantially decreases the amount of data comparisons required for effective inference. This model integrates a network representation of the city or country, along with assumptions of spatial smoothness that allow deprivation in one area to be informed by neighbouring areas. We demonstrate the practical effectiveness of this method, through a novel comparative judgement data set collected in Dar es Salaam, Tanzania.
Prediction and modelling of competitive sports outcomes has received much recent attention, especially from the Bayesian statistics and machine learning communities. In the real world setting of outcome prediction, the seminal {E}lH{o} update still r emains, after more than 50 years, a valuable baseline which is difficult to improve upon, though in its original form it is a heuristic and not a proper statistical model. Mathematically, the {E}lH{o} rating system is very closely related to the Bradley-Terry models, which are usually used in an explanatory fashion rather than in a predictive supervised or on-line learning setting. Exploiting this close link between these two model classes and some newly observed similarities, we propose a new supervised learning framework with close similarities to logistic regression, low-rank matrix completion and neural networks. Building on it, we formulate a class of structured log-odds models, unifying the desirable properties found in the above: supervised probabilistic prediction of scores and wins/draws/losses, batch/epoch and on-line learning, as well as the possibility to incorporate features in the prediction, without having to sacrifice simplicity, parsimony of the Bradley-Terry models, or computational efficiency of {E}lH{o}s original approach. We validate the structured log-odds modelling approach in synthetic experiments and English Premier League outcomes, where the added expressivity yields the best predictions reported in the state-of-art, close to the quality of contemporary betting odds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا