ترغب بنشر مسار تعليمي؟ اضغط هنا

Meromorphic solutions of recurrence relations and DRA method for multicomponent master integrals

63   0   0.0 ( 0 )
 نشر من قبل Roman Nikolaevich Lee
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We formulate a method to find the meromorphic solutions of higher-order recurrence relations in the form of the sum over poles with coefficients defined recursively. Several explicit examples of the application of this technique are given. The main advantage of the described approach is that the analytical properties of the solutions are very clear (the position of poles is explicit, the behavior at infinity can be easily determined). These are exactly the properties that are required for the application of the multiloop calculation method based on dimensional recurrence relations and analyticity (the DRA method).

قيم البحث

اقرأ أيضاً

We propose a novel method to compute multi-loop master integrals by constructing and numerically solving a system of ordinary differential equations, with almost trivial boundary conditions. Thus it can be systematically applied to problems with arbi trary kinematic configurations. Numerical tests show that our method can not only achieve results with high precision, but also be much faster than the only existing systematic method sector decomposition. As a by product, we find a new strategy to compute scalar one-loop integrals without reducing them to master integrals.
We present the Mathematica package DREAM for arbitrarily high precision computation of multiloop integrals within the DRA (Dimensional Recurrence & Analyticity) method as solutions of dimensional recurrence relations. Starting from these relations, t he package automatically constructs the inhomogeneous solutions and reduces the manual efforts to setting proper homogeneous solutions. DREAM also provides means to define the homogeneous solutions of the higher-order recurrence relations (and can construct those of the first-order recurrence relations automatically). Therefore, this package can be used to apply the DRA method to the topologies with sectors having more than one master integral. Two nontrivial examples are presented: four-loop fully massive tadpole diagrams of cat-eye topology and three-loop cut diagrams which are necessary for computation of the width of the para-positronium decay into four photons. The analytical form of this width is obtained here for the first time to the best of our knowledge.
The standard procedure when evaluating integrals of a given family of Feynman integrals, corresponding to some Feynman graph, is to construct an algorithm which provides the possibility to write any particular integral as a linear combination of so-c alled master integrals. To do this, public (AIR, FIRE, REDUZE, LiteRed, KIRA) and private codes based on solving integration by parts relations are used. However, the choice of the master integrals provided by these codes is not always optimal. We present an algorithm to improve a given basis of the master integrals, as well as its computer implementation; see also a competitive variant [1].
We present the complete set of planar master integrals relevant to the calculation of three-point functions in four-loop massless Quantum Chromodynamics. Employing direct parametric integrations for a basis of finite integrals, we give analytic resul ts for the Laurent expansion of conventional integrals in the parameter of dimensional regularization through to terms of weight eight.
We evaluate analytically all previously unknown nonplanar master integrals for massless five-particle scattering at two loops, using the differential equations method. A canonical form of the differential equations is obtained by identifying integral s with constant leading singularities, in $D$ space-time dimensions. These integrals evaluate to $mathbb{Q}$-linear combinations of multiple polylogarithms of uniform weight at each order in the expansion in the dimensional regularization parameter, and are in agreement with previous conjectures for nonplanar pentagon functions. Our results provide the complete set of two-loop Feynman integrals for any massless $2to 3$ scattering process, thereby opening up a new level of precision collider phenomenology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا