ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization of multilayer networks by the optimized single-layer rewiring

73   0   0.0 ( 0 )
 نشر من قبل Priodyuti Pradhan
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

We study localization properties of principal eigenvector (PEV) of multilayer networks. Starting with a multilayer network corresponding to a delocalized PEV, we rewire the network edges using an optimization technique such that the PEV of the rewired multilayer network becomes more localized. The framework allows us to scrutinize structural and spectral properties of the networks at various localization points during the rewiring process. We show that rewiring only one-layer is enough to attain a multilayer network having a highly localized PEV. Our investigation reveals that a single edge rewiring of the optimized multilayer network can lead to the complete delocalization of a highly localized PEV. This sensitivity in the localization behavior of PEV is accompanied by a pair of almost degenerate eigenvalues. This observation opens an avenue to gain a deeper insight into the origin of PEV localization of networks. Furthermore, analysis of multilayer networks constructed using real-world social and biological data show that the localization properties of these real-world multilayer networks are in good agreement with the simulation results for the model multilayer network. The study is relevant to applications that require understanding propagation of perturbation in multilayer networks.



قيم البحث

اقرأ أيضاً

From critical infrastructure, to physiology and the human brain, complex systems rarely occur in isolation. Instead, the functioning of nodes in one system often promotes or suppresses the functioning of nodes in another. Despite advances in structur al interdependence, modeling interdependence and other interactions between dynamic systems has proven elusive. Here we define a broadly applicable dynamic dependency link and develop a general framework for interdependent and competitive interactions between general dynamic systems. We apply our framework to studying interdependent and competitive synchronization in multi-layer oscillator networks and cooperative/competitive contagions in an epidemic model. Using a mean-field theory which we verify numerically, we find explosive transitions and rich behavior which is absent in percolation models including hysteresis, multi-stability and chaos. The framework presented here provides a powerful new way to model and understand many of the interacting complex systems which surround us.
Network science have constantly been in the focus of research for the last decade, with considerable advances in the controllability of their structural. However, much less effort has been devoted to study that how to improve the controllability of c omplex networks. In this paper, a new algorithm is proposed to improve the controllability of complex networks by rewiring links regularly which transforms the network structure. Then it is demonstrated that our algorithm is very effective after numerical simulation experiment on typical network models (Erdos-Renyi and scale-free network). We find that our algorithm is mainly determined by the average degree and positive correlation of in-degree and out-degree of network and it has nothing to do with the network size. Furthermore, we analyze and discuss the correlation between controllability of complex networks and degree distribution index: power-law exponent and heterogeneity
Network data can be conveniently modeled as a graph signal, where data values are assigned to the nodes of a graph describing the underlying network topology. Successful learning from network data requires methods that effectively exploit this graph structure. Graph neural networks (GNNs) provide one such method and have exhibited promising performance on a wide range of problems. Understanding why GNNs work is of paramount importance, particularly in applications involving physical networks. We focus on the property of discriminability and establish conditions under which the inclusion of pointwise nonlinearities to a stable graph filter bank leads to an increased discriminative capacity for high-eigenvalue content. We define a notion of discriminability tied to the stability of the architecture, show that GNNs are at least as discriminative as linear graph filter banks, and characterize the signals that cannot be discriminated by either.
Real-world complex systems always interact with each other, which causes these systems to collapse in an avalanche or cascading manner in the case of random failures or malicious attacks. The robustness of multilayer networks has attracted great inte rest, where the modeling and theoretical studies of which always rely on the concept of multilayer networks and percolation methods. A straightforward and tacit assumption is that the interdependence across network layers is strong, which means that a node will fail entirely with the removal of all links if one of its interdependent neighbours fails. However, this oversimplification cannot describe the general form of interactions across the network layers in a real-world multilayer system. In this paper, we reveal the nature of the avalanche disintegration of general multilayer networks with arbitrary interdependency strength across network layers. Specifically, we identify that the avalanche process of the whole system can essentially be decomposed into two microscopic cascading dynamics in terms of the propagation direction of the failures: depth penetration and scope extension. In the process of depth penetration, the failures propagate from layer to layer, where the greater the number of failed nodes is, the greater the destructive power that will emerge in an interdependency group. In the process of scope extension, failures propagate with the removal of connections in each network layer. Under the synergy of the two processes, we find that the percolation transition of the system can be discontinuous or continuous with changes in the interdependency strength across network layers, which means that sudden system-wide collapse can be avoided by controlling the interdependency strength across network layers.
Much research effort has been devoted to developing methods for reconstructing the links of a network from dynamics of its nodes. Many current methods require the measurements of the dynamics of all the nodes be known. In real-world problems, it is c ommon that either some nodes of a network of interest are unknown or the measurements of some nodes are unavailable. These nodes, either unknown or whose measurements are unavailable, are called hidden nodes. In this paper, we derive analytical results that explain the effects of hidden nodes on the reconstruction of bidirectional networks. These theoretical results and their implications are verified by numerical studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا