ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision Measurement of the Hadronic Contribution to the Muon Anomalous Magnetic Moment

93   0   0.0 ( 0 )
 نشر من قبل Sean Dobbs
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on a precision measurement of the cross section for the reaction $e^+e^-topi^+pi^-$ in the mass range $0.30<M_{pipi}<1.00$ GeV with the initial state radiation (ISR) method, using 817 pb$^{-1}$ of data at $e^+e^-$ center-of-mass energies near 3.77 GeV and 586 pb$^{-1}$ of data at $e^+e^-$ center-of-mass energies near 4.17 GeV, collected with the CLEO-c detector at the CESR $e^+e^-$ collider at Cornell University. The integrated cross sections in the range $0.30<M_{pipi}<1.00$ GeV for the process $e^+e^-topi^+pi^-$ are determined with a statistical uncertainty of $0.7%$ and a systematic uncertainty of $1.5%$. The leading-order hadronic contribution to the muon anomalous magnetic moment calculated using these measured $e^+e^-topi^+pi^-$ cross sections in the range $M_{pipi}=0.30$ to 1.00 GeV is calculated to be $(500.4pm3.6 (mathrm{stat})pm 7.5(mathrm{syst}))times10^{-10}$.



قيم البحث

اقرأ أيضاً

81 - T. Blum , P.A. Boyle , V. Gulpers 2018
We present a first-principles lattice QCD+QED calculation at physical pion mass of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. The total contribution of up, down, strange, and charm quarks includ ing QED and strong isospin breaking effects is found to be $a_mu^{rm HVP~LO}=715.4(16.3)(9.2) times 10^{-10}$, where the first error is statistical and the second is systematic. By supplementing lattice data for very short and long distances with experimental R-ratio data using the compilation of Ref. [1], we significantly improve the precision of our calculation and find $a_mu^{rm HVP~LO} = 692.5(1.4)(0.5)(0.7)(2.1) times 10^{-10}$ with lattice statistical, lattice systematic, R-ratio statistical, and R-ratio systematic errors given separately. This is the currently most precise determination of the leading-order hadronic vacuum polarization contribution to the muon anomalous magnetic moment. In addition, we present the first lattice calculation of the light-quark QED correction at physical pion mass.
We present a four-flavour lattice calculation of the leading-order hadronic vacuum polarisation contribution to the anomalous magnetic moment of the muon, $a_mathrm{mu}^{rm hvp}$, arising from quark-connected Feynman graphs. It is based on ensembles featuring $N_f=2+1+1$ dynamical twisted mass fermions generated by the European Twisted Mass Collaboration (ETMC). Several light quark masses are used in order to yield a controlled extrapolation to the physical pion mass. We employ three lattice spacings to examine lattice artefacts and several different volumes to check for finite-size effects. Incorporating the complete first two generations of quarks allows for a direct comparison with phenomenological determinations of $a_mathrm{mu}^{rm hvp}$. Our final result including an estimate of the systematic uncertainty $$a_{mathrm{mu}}^{rm hvp} = 6.74(21)(18) cdot 10^{-8}$$ shows a good overall agreement with these computations.
The quark-connected part of the hadronic light-by-light scattering contribution to the muons anomalous magnetic moment is computed using lattice QCD with chiral fermions. We report several significant algorithmic improvements and demonstrate their ef fectiveness through specific calculations which show a reduction in statistical errors by more than an order of magnitude. The most realistic of these calculations is performed with a near-physical, $171$ MeV pion mass on a $(4.6;mathrm{fm})^3$ spatial volume using the $32^3times 64$ Iwasaki+DSDR gauge ensemble of the RBC/UKQCD Collaboration.
We report preliminary results for the hadronic light-by-light scattering contribution to the muon anomalous magnetic moment. Several ensembles using 2+1 flavors of Mobius domain-wall fermions, generated by the RBC/UKQCD collaborations, are employed t o take the continuum and infinite volume limits of finite volume lattice QED+QCD. We find $a_mu^{rm HLbL} = (7.41pm6.33)times 10^{-10}$
441 - B. Abi 2021
We present the first results of the Fermilab Muon g-2 Experiment for the positive muon magnetic anomaly $a_mu equiv (g_mu-2)/2$. The anomaly is determined from the precision measurements of two angular frequencies. Intensity variation of high-energy positrons from muon decays directly encodes the difference frequency $omega_a$ between the spin-precession and cyclotron frequencies for polarized muons in a magnetic storage ring. The storage ring magnetic field is measured using nuclear magnetic resonance probes calibrated in terms of the equivalent proton spin precession frequency ${tilde{omega}^{}_p}$ in a spherical water sample at 34.7$^{circ}$C. The ratio $omega_a / {tilde{omega}^{}_p}$, together with known fundamental constants, determines $a_mu({rm FNAL}) = 116,592,040(54)times 10^{-11}$ (0.46,ppm). The result is 3.3 standard deviations greater than the standard model prediction and is in excellent agreement with the previous Brookhaven National Laboratory (BNL) E821 measurement. After combination with previous measurements of both $mu^+$ and $mu^-$, the new experimental average of $a_mu({rm Exp}) = 116,592,061(41)times 10^{-11}$ (0.35,ppm) increases the tension between experiment and theory to 4.2 standard deviations
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا