ﻻ يوجد ملخص باللغة العربية
We show that a simple extension of the Standard Model involving the introduction of vector-like quarks and heavy neutrinos, provides an explanation of the so called B-anomalies in $bto sellbarell$ transitions. Vector-like quarks can explain, in the context of a discrete flavour symmetry, all the relevant characteristics of the Cabibbo-Kobayashi-Maskawa sector. It is in this framework that we study the requirements on the masses of the vector like quarks and the heavy neutrinos leading to viable models with sufficient deviations of lepton flavour universality and which simultaneously avoid too large Flavour Changing Neutral Current effects. Related predictions on $bto dellbarell$ and $sto dellbarell$ transitions are also analysed in detail.
We demonstrate that flavour-changing neutral currents in the top sector, mediated by leptophilic scalars at the electroweak scale, can easily arise in scenarios of new physics, and in particular in composite Higgs models. We moreover show that such i
We construct a three-Higgs doublet model with a flavour non-universal ${rm U}(1)times mathbb{Z}_2$ symmetry. That symmetry induces suppressed flavour-changing interactions mediated by neutral scalars. New scalars with masses below the TeV scale can s
We study the contraints on non-flavour-blind soft supersymmetry breaking terms coming from flavour and CP violating processes in the presence of hierarchical Yukawa couplings, and quantify how much these constraints are weakened in the regions of the
We propose a class of Two Higgs Doublet Models where there are Flavour Changing Neutral Currents (FCNC) at tree level, but under control due to the introduction of a discrete symmetry in the full Lagrangian. It is shown that in this class of models,
We investigate a speculative short-distance force, proposed to explain discrepancies observed between measurements of certain neutral current decays of $B$ hadrons and their Standard Model predictions. The force derives from a spontaneously broken, g