ﻻ يوجد ملخص باللغة العربية
In this work we analyze the zero mode localization and resonances of $1/2-$spin fermions in co-dimension one Randall-Sundrum braneworld scenarios. We consider delta-like, domain walls and deformed domain walls membranes. Beyond the influence of the spacetime dimension $D$ we also consider three types of couplings: (i) the standard Yukawa coupling with the scalar field and parameter $eta_1$, (ii) a Yukawa-dilaton coupling with two parameters $eta_2$ and $lambda$ and (iii) a dilaton derivative coupling with parameter $h$. Together with the deformation parameter $s$, we end up with five free parameter to be considered. For the zero mode we find that the localization is dependent of $D$, because the spinorial representation changes when the bulk dimensionality is odd or even and must be treated separately. For case (i) we find that in odd dimensions only one chirality can be localized and for even dimension a massless Dirac spinor is trapped over the brane. In the cases (ii) and (iii) we find that for some values of the parameters, both chiralities can be localized in odd dimensions and for even dimensions we obtain that the massless Dirac spinor is trapped over the brane. We also calculated numerically resonances for cases (ii) and (iii) by using the transfer matrix method. We find that, for deformed defects, the increasing of $D$ induces a shift in the peaks of resonances. For a given $lambda$ with domain walls, we find that the resonances can show up by changing the spacetime dimensionality. For example, the same case in $D=5$ do not induces resonances but when we consider $D=10$ one peak of resonance is found. Therefore the introduction of more dimensions, diversely from the bosonic case, can change drastically the zero mode and resonances in fermion fields.
The dynamics of higher-spin fields in braneworlds is discussed. In particular, we study fermionic and bosonic higher-spin fields in AdS_5 and their localization on branes. We find that four-dimensional zero modes exist only for spin-one fields, if th
It is well known that the usual formulation of Elko spinor fields leads to a subtle Lorentz symmetry break encoded in the spin sums. Recently it was proposed a redefinition in the dual structure, along with a given mathematical device, which eliminat
Bearing in mind the Lounesto spinor classification, we connect the expansion coefficients of well behaved fermionic quantum field, i.e., a local field within a full Lorentz covariant theory, with and only with a given subclass of Type-2 spinors accor
This paper reviews how a two-state, spin-one-half system transforms under rotations. It then uses that knowledge to explain how momentum-zero, spin-one-half annihilation and creation operators transform under rotations. The paper then explains how a
Cylindrical braneworlds have been used in the literature as a convenient way to resolve co-dimension-two branes. They are prevented from collapsing by a massless worldvolume field with non-trivial winding, but here we discuss another way of preventin