ﻻ يوجد ملخص باللغة العربية
The observed spectral energy distribution of an accreting supermassive black hole typically forms a power-law spectrum in the Near Infrared (NIR) and optical wavelengths, that may be interpreted as a signature of accelerated electrons along the jet. However, the details of acceleration remain uncertain. In this paper, we study the radiative properties of jets produced in axisymmetric GRMHD simulations of hot accretion flows onto underluminous supermassive black holes both numerically and semi-analytically, with the aim of investigating the differences between models with and without accelerated electrons inside the jet. We assume that electrons are accelerated in the jet regions of our GRMHD simulation. To model them, we modify the electrons distribution function in the jet regions from a purely relativistic thermal distribution to a combination of a relativistic thermal distribution and the $kappa$-distribution function. Inside the disk, we assume a thermal distribution for the electrons. We calculate jet spectra and synchrotron maps by using the ray tracing code {tt RAPTOR}, and compare the synthetic observations to observations of Sgr~A*. Finally, we compare numerical models of jets to semi-analytical ones. We find that in the $kappa$-jet models, the radio-emitting region size, radio flux, and spectral index in NIR/optical bands increase for decreasing values of the $kappa$ parameter, which corresponds to a larger amount of accelerated electrons. The model with $kappa = 3.5$, $eta_{rm acc}=5-10%$ (the percentage of electrons that are accelerated), and observing angle $i = 30^{rm o}$ fits the observed Sgr~A* emission in the flaring state from the radio to the NIR/optical regimes, while $kappa = 3.5$, $eta_{rm acc}< 1%$, and observing angle $i = 30^{rm o}$ fit the upper limits in quiescence.
General relativistic numerical simulations of magnetized accretion flows around black holes show a disordered electromagnetic structure in the disk and corona and a highly relativistic, Poynting-dominated funnel jet in the polar regions. The polar je
The generation of turbulence at magnetized shocks and its subsequent interaction with the latter is a key question of plasma- and high-energy astrophysics. This paper presents two-dimensional magnetohydrodynamic simulations of a fast shock front inte
The half opening angle of a Kerr black-hole shadow is always equal to (5+-0.2)GM/Dc^2, where M is the mass of the black hole and D is its distance from the Earth. Therefore, measuring the size of a shadow and verifying whether it is within this 4% ra
The compact radio source Sgr A* is coincident with a 4 million solar mass black hole at the dynamical center of the Galaxy and is surrounded by dense orbiting ionized and molecular gas. We present high resolution radio continuum images of the central
We study the environment of Sgr A* using spectral and continuum observations with the ALMA and VLA. Our analysis of sub-arcsecond H30alpha, H39alpha, H52alpha and H56alpha line emission towards Sgr A* confirm the recently published broad peak ~500 km