ﻻ يوجد ملخص باللغة العربية
The orbital instability of standing waves for the Klein-Gordon-Zakharov system has been established in two and three space dimensions under radially symmetric condition, see Ohta-Todorova (SIAM J. Math. Anal. 2007). In the one space dimensional case, for the non-degenerate situation, we first check that the Klein-Gordon-Zakharov system satisfies Grillakis-Shatah-Strauss assumptions on the stability and instability theorems for abstract Hamiltonian systems, see Grillakis-Shatah-Strauss (J. Funct. Anal. 1987). As to the degenerate case that the frequency $|omega|=1/sqrt{2}$, we follow Wu (ArXiv: 1705.04216, 2017) to describe the instability of the standing waves for the Klein-Gordon-Zakharov system, by using the modulation argument combining with the virial identity. For this purpose, we establish a modified virial identity to overcome several troublesome terms left in the traditional virial identity.
We investigate the orbital stability and instability of standing waves for two classes of Klein-Gordon equations in the semi-classical regime.
We consider a system of two coupled non-linear Klein-Gordon equations. We show the existence of standing waves solutions and the existence of a Lyapunov function for the ground state.
We prove definitive results on the global stability of the flat space among solutions of the Einstein-Klein-Gordon system. Our main theorems in this monograph include: (1) A proof of global regularity (in wave coordinates) of solutions of the Einstei
We consider the nonlinear Klein-Gordon equation in $R^d$. We call multi-solitary waves a solution behaving at large time as a sum of boosted standing waves. Our main result is the existence of such multi-solitary waves, provided the composing boosted
We are going to study the standing waves for a generalized Choquard equation with potential: $$ -ipartial_t u-Delta u+V(x)u=(|x|^{-mu}ast|u|^p)|u|^{p-2}u, hbox{in} mathbb{R}timesmathbb{R}^3, $$ where $V(x)$ is a real function, $0<mu<3$, $2-mu/3<p<