ﻻ يوجد ملخص باللغة العربية
We compare discrete-time quantum walks on graphs to their natural classical equivalents, which we argue are lifted Markov chains, that is, classical Markov chains with added memory. We show that these can simulate quantum walks, allowing us to answer an open question on how the graph topology ultimately bounds their mixing performance, and that of any stochastic local evolution. The results highlight that speedups in mixing and transport phenomena are not necessarily diagnostic of quantum effects, although superdiffusive spreading is more prominent with quantum walks.
We analyze continuous-time quantum walks on necklace graphs - cyclical graphs consisting of many copies of a smaller graph (pearl). Using a Bloch-type ansatz for the eigenfunctions, we block-diagonalize the Hamiltonian, reducing the effective size of
One of the crucial steps in building a scalable quantum computer is to identify the noise sources which lead to errors in the process of quantum evolution. Different implementations come with multiple hardware-dependent sources of noise and decoheren
We introduce a fidelity-based measure $text{D}_{text{CQ}}(t)$ to quantify the differences between the dynamics of classical (CW) and quantum (QW) walks over a graph. We provide universal, graph-independent, analytic expressions of this quantum-classi
We use discrete-event simulation on a digital computer to study two different models of experimentally realizable quantum walks. The simulation models comply with Einstein locality, are as realistic as the one of the simple random walk in that the pa
Two models are first presented, of one-dimensional discrete-time quantum walk (DTQW) with temporal noise on the internal degree of freedom (i.e., the coin): (i) a model with both a coin-flip and a phase-flip channel, and (ii) a model with random coin