ﻻ يوجد ملخص باللغة العربية
The Gamma Beam System (GBS) is a high brightness LINAC to be installed in Magurele (Bucharest) at the new ELI-NP (Extreme Light Infrastructure - Nuclear Physics) laboratory. The accelerated electrons, with energies ranging from 280 to 720 MeV, will collide with a high power laser to produce tunable high energy photons (0.2-20MeV ) with high intensity (10e13 photons/s), high brilliance and spectral purity (0.1% BW), through the Compton backscattering process. This light source will be open to users for nuclear photonics and nuclear physics advanced experiments. Tested high level applications will play an important role in commissioning and operation. In this paper we report the progress and status of the development of dedicated high level applications. We also present the results of the test on the FERMI LINAC of the electron trajectory control method based on Dispersion Free Steering.
The machine described in this document is an advanced Source of up to 20 MeV Gamma Rays based on Compton back-scattering, i.e. collision of an intense high power laser beam and a high brightness electron beam with maximum kinetic energy of about 720
We study the production of radioisotopes for nuclear medicine in (gamma,gamma) photoexcitation reactions or (gamma,xn + yp) photonuclear reactions for the examples of ^195mPt, ^117mSn and ^44Ti with high flux [(10^13 - 10^15) gamma/s], small beam dia
The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling of a muon beam. The demonstration is based on a simplified version of a neutrino factory cooling channel. As the emittance measu
Future colliders such as NLC and JLC will require a highly-polarized macropulse with charge that is more than an order of magnitude beyond that which could be produced for the SLC. The maximum charge from the SLC uniformly-doped GaAs photocathode was
We study and discuss electron acceleration in vacuum interacting with fundamental Gaussian pulses using specific parameters relevant for the multi-PW femtosecond lasers at ELI-NP. Taking into account the characteristic properties of both linearly and