ترغب بنشر مسار تعليمي؟ اضغط هنا

Robo-AO Discovery and Basic Characterization of Wide Multiple Star Systems in the Pleiades, Praesepe, and NGC 2264 Clusters

94   0   0.0 ( 0 )
 نشر من قبل Lynne Hillenbrand
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify and roughly characterize 66 candidate binary star systems in the Pleiades, Praesepe, and NGC 2264 star clusters based on robotic adaptive optics imaging data obtained using Robo-AO at the Palomar 60 telescope. Only $sim$10% of our imaged pairs were previously known. We detect companions at red optical wavelengths having physical separations ranging from a few tens to a few thousand AU. A 3-sigma contrast curve generated for each final image provides upper limits to the brightness ratios for any undetected putative companions. The observations are sensitive to companions with maximum contrast $sim$6$^m$ at larger separations. At smaller separations, the mean (best) raw contrast at 2 arcsec is 3.8$^m$ (6$^m$), at 1 arcsec is 3.0$^m$ (4.5$^m$), and at 0.5 arcsec is 1.9$^m$ (3$^m$). PSF subtraction can recover close to the full contrast in to the closer separations. For detected candidate binary pairs, we report separations, position angles, and relative magnitudes. Theoretical isochrones appropriate to the Pleiades and Praesepe clusters are then used to determine the corresponding binary mass ratios, which range from 0.2-0.9 in $q=m_2/m_1$. For our sample of roughly solar-mass (FGK type) stars in NGC 2264 and sub-solar-mass (K and early M-type) primaries in the Pleiades and Praesepe, the overall binary frequency is measured at $sim$15.5% $pm$ 2%. However, this value should be considered a lower limit to the true binary fraction within the specified separation and mass ratio ranges in these clusters, given that complex and uncertain corrections for sensitivity and completeness have not been applied.

قيم البحث

اقرأ أيضاً

216 - N. Lodieu 2019
Aims: Our scientific goal is to provide revised membership lists of the Alpha Per, Pleiades, and Praesepe clusters exploiting the second data release of Gaia and produce five-dimensional maps (ra, dec, parallax, pmRA, pmDEC) of these clusters. Meth ods: We implemented the kinematic method combined with the statistical treatment of parallaxes and proper motions to identify astrometric member candidates of three of the most nearby and best studied open clusters in the sky. Results: We cross-correlated the Gaia catalogue with large-scale public surveys to complement the astrometry of Gaia with multi-band photometry from the optical to the mid-infrared. We identified 517, 1248, and 721 bona-fide astrometric member candidates inside the tidal radius of the Alpha Per, the Pleiades, and Praesepe, respectively. We cross-matched our final samples with catalogues from previous surveys to address the level of completeness. We update the main physical properties of the clusters, including mean distance and velocity as well as core, half-mass, and tidal radii. We infer updated ages from the white dwarf members of the Pleiades and Praesepe. We derive the luminosity and mass functions of the three clusters and compare them to the field mass function. We compute the positions in space of all member candidates in the three regions to investigate their distribution in space. Conclusions: We provide updated distances and kinematics for the three clusters. We identify a list of members in the Alpha Per, Pleiades, and Praesepe clusters from the most massive stars all the way down into the hydrogen-burning limit with a higher confidence and better astrometry than previous studies. We produce complete 5D maps of stellar and substellar bona-fide members in these three regions. ABRIDGED
Flares, energetic eruptions on the surfaces of stars, are an unmistakable manifestation of magnetically driven emission. Their occurrence rates and energy distributions trace stellar characteristics such as mass and age. But before flares can be used to constrain stellar properties, the flaring-age-mass relation requires proper calibration. This work sets out to quantify flaring activity of independently age-dated main sequence stars for a broad range of spectral types using optical light curves obtained by the Kepler satellite. Drawing from the complete K2 archive, we searched 3435 $sim 80$ day long light curves of 2111 open cluster members for flares using the open-source software packages K2SC to remove instrumental and astrophysical variability from K2 light curves, and AltaiPony to search and characterize the flare candidates. We confirmed a total of 3844 flares on high probability open cluster members with ages from zero age main sequence (Pleiades) to 3.6 Gyr (M67). We extended the mass range probed in the first study of this series to span from Sun-like stars to mid-M dwarfs. We added the Hyades (690 Myr) to the sample as a comparison cluster to Praesepe (750 Myr), the 2.6 Gyr old Ruprecht 147, and several hundred light curves from the late K2 Campaigns in the remaining clusters. The flare energy distribution was similar in the entire parameter space, following a power law relation with exponent $alphaapprox 1.84-2.39$. The flaring rates declined with age, and declined faster for higher mass stars. We found evidence that a rapid decline in flaring activity occurred in M1-M2 dwarfs around Hyades/Praesepe age, when these stars spun down to rotation periods of about 10 days, while higher mass stars had already transitioned to lower flaring rates, and lower mass stars still resided in the saturated activity regime. (abridged)
Rapidly rotating, low-mass members of eclipsing binary systems have measured radii significantly larger than predicted by standard models. It has been proposed that magnetic activity is responsible for radius inflation. By estimating the radii of low -mass stars in three young clusters (NGC 2264, NGC 2547, NGC 2516, with ages of 5, 35 and 140 Myr respectively), we aim to establish whether similar radius inflation is seen in single, magnetically active stars. We use radial velocities from the Gaia-ESO Survey (GES) and published photometry to establish cluster membership and combine GES measurements of vsini with published rotation periods to estimate average radii for groups of fast-rotating cluster members as a function of their luminosity and age. The average radii are compared with the predictions of both standard evolutionary models and variants that include magnetic inhibition of convection and starspots. At a given luminosity, the stellar radii in NGC 2516 and NGC 2547 are larger than predicted by standard evolutionary models at the ages of these clusters. The discrepancy is least pronounced and not significant ~10 percent) in ZAMS stars with radiative cores, but more significant in lower-mass, fully convective pre main-sequence cluster members, reaching 30+/-10 percent. The uncertain age and distance of NGC 2264 preclude a reliable determination of any discrepancy for its members. The median radii we have estimated for low-mass fully convective stars in the older clusters are inconsistent (at the 2-3 sigma level) with non-magnetic evolutionary models and more consistent with models that incorporate the effects of magnetic fields or dark starspots. The available models suggest this requires either surface magnetic fields exceeding 2.5 kG, spots that block about 30 per cent of the photospheric flux, or a more moderate combination of both. [Abridged]
We explore the structure and star formation history of the open cluster NGC 2264 (~3 Myr). We combined spectroscopic data from the Gaia-ESO Survey (GES) with multi-wavelength photometry from the Coordinated Synoptic Investigation of NGC 2264 (CSI 226 4). We examined a sample of 655 cluster members, including both disk-bearing and disk-free young stars. We find a significant age spread of 4-5 Myr among cluster members. Disk-bearing objects are statistically associated with younger isochronal ages than disk-free sources. The cluster has a hierarchical structure, with two main blocks. The northern half develops around the O-type binary star S Mon; the southern half, close to the tip of the Cone Nebula, contains the most embedded regions of NGC 2264, populated mainly by objects with disks and ongoing accretion. The median ages of objects at different locations within the cluster, and the spatial distribution of disked and non-disked sources, suggest that star formation began in the north of the cluster, over 5 Myr ago, and was ignited in its southern region a few Myr later. Star formation is likely still ongoing in the most embedded regions of the cluster, while the outer regions host a widespread population of more evolved objects. We find a detectable lag between the typical age of disk-bearing objects and that of accreting objects in the inner regions of NGC 2264: the first tend to be older than the second, but younger than disk-free sources at similar locations within the cluster. This supports earlier findings that the characteristic timescales of disk accretion are shorter than those of disk dispersal, and smaller than the average age of NGC 2264 (i.e., < 3 Myr). At the same time, disks in the north of the cluster tend to be shorter-lived (~2.5 Myr) than elsewhere; this may reflect the impact of massive stars within the region (notably S Mon), that trigger rapid disk dispersal.
The technique of chemical tagging uses the elemental abundances of stellar atmospheres to `reconstruct chemically homogeneous star clusters that have long since dispersed. The GALAH spectroscopic survey --which aims to observe one million stars using the Anglo-Australian Telescope -- allows us to measure up to 30 elements or dimensions in the stellar chemical abundance space, many of which are not independent. How to find clustering reliably in a noisy high-dimensional space is a difficult problem that remains largely unsolved. Here we explore t-distributed stochastic neighbour embedding (t-SNE) -- which identifies an optimal mapping of a high-dimensional space into fewer dimensions -- whilst conserving the original clustering information. Typically, the projection is made to a 2D space to aid recognition of clusters by eye. We show that this method is a reliable tool for chemical tagging because it can: (i) resolve clustering in chemical space alone, (ii) recover known open and globular clusters with high efficiency and low contamination, and (iii) relate field stars to known clusters. t-SNE also provides a useful visualization of a high-dimensional space. We demonstrate the method on a dataset of 13 abundances measured in the spectra of 187,000 stars by the GALAH survey. We recover 7 of the 9 observed clusters (6 globular and 3 open clusters) in chemical space with minimal contamination from field stars and low numbers of outliers. With chemical tagging, we also identify two Pleiades supercluster members (which we confirm kinematically), one as far as 6$^circ$ -- one tidal radius away from the cluster centre.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا