ترغب بنشر مسار تعليمي؟ اضغط هنا

Blackbody radiation shift assessment for a lutetium ion clock

263   0   0.0 ( 0 )
 نشر من قبل Kyle Arnold
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measure the dynamic differential scalar polarizabilities at 10.6 $mu$m for two candidate clock transitions in $^{176}mathrm{Lu}^+$. The fractional black body radiation (BBR) shifts at 300 K for the $^1S_0 leftrightarrow {^3D_1}$ and $^1S_0 leftrightarrow {^3D_2}$ transitions are evaluated to be $-1.36,(9) times 10^{-18}$ and $2.70 ,(21) times10^{-17}$, respectively. The former is the lowest of any established optical atomic clock.



قيم البحث

اقرأ أيضاً

436 - Yongjun Cheng , J. Mitroy 2012
A calculation of the blackbody radiation shift of the B$^+$ clock transition is performed. The polarizabilities of the B$^+$ $2s^2$ $^1$S$^e$, $2s2p$ $^1$P$^o$, and $2s2p$ $^3$P$^o$ states are computed using the configuration interaction method with an underlying semi-empirical core potential. The recommended dipole polarizabilities are 9.64(3) $a_0^3$, 7.78(3) $a_0^3$ and 16.55(5) $a_0^3$ respectively. The derived frequency shift for the $2s^2$ $^1$S$^e$ $to$ $2s2p$ $^3$P$^o_0$ transition at 300 K is 0.0160(5) Hz. The dipole polarizabilities agree with an earlier relativistic calculation (Safronova {em et al.} Phys. Rev. Lett. {bf 107} 143006 (2011)) to better than 0.2%. Quadrupole and octupole polarizabilities and non-adiabatic multipole polarizabilities are also reported.
We demonstrate precision measurement and control of inhomogeneous broadening in a multi-ion clock consisting of three $^{176}$Lu$^+$ ions. Microwave spectroscopy between hyperfine states in the $^3D_1$ level is used to characterise differential syste matic shifts between ions, most notably those associated with the electric quadrupole moment. By appropriate alignment of the magnetic field, we demonstrate suppression of these effects to the $sim 10^{-17}$ level relative to the $^1S_0leftrightarrow{}^3D_1$ optical transition frequency. Correlation spectroscopy on the optical transition demonstrates the feasibility of a 10s Ramsey interrogation in the three ion configuration with a corresponding projection noise limited stability of $sigma(tau)=8.2times 10^{-17}/sqrt{tau}$
We evaluated the static and dynamic polarizabilities of the 5s^2 ^1S_0 and 5s5p ^3P_0^o states of Sr using the high-precision relativistic configuration interaction + all-order method. Our calculation explains the discrepancy between the recent exper imental 5s^2 ^1S_0 - 5s5p ^3P_0^o dc Stark shift measurement Delta alpha = 247.374(7) a.u. [Middelmann et. al, arXiv:1208.2848 (2012)] and the earlier theoretical result of 261(4) a.u. [Porsev and Derevianko, Phys. Rev. A 74, 020502R (2006)]. Our present value of 247.5 a.u. is in excellent agreement with the experimental result. We also evaluated the dynamic correction to the BBR shift with 1 % uncertainty; -0.1492(16) Hz. The dynamic correction to the BBR shift is unusually large in the case of Sr (7 %) and it enters significantly into the uncertainty budget of the Sr optical lattice clock. We suggest future experiments that could further reduce the present uncertainties.
The Stark shift of the ytterbium optical clock transition due to room temperature blackbody radiation is dominated by a static Stark effect, which was recently measured to high accuracy [J. A. Sherman et al., Phys. Rev. Lett. 108, 153002 (2012)]. How ever, room temperature operation of the clock at 10^{-18} inaccuracy requires a dynamic correction to this static approximation. This dynamic correction largely depends on a single electric dipole matrix element for which theoretically and experimentally derived values disagree significantly. We determine this important matrix element by two independent methods, which yield consistent values. Along with precise radiative lifetimes of 6s6p 3P1 and 5d6s 3D1, we report the clocks blackbody radiation shift to 0.05% precision.
Motivated by the prospect of an optical frequency standard based on 43Ca+, we calculate the blackbody radiation (BBR) shift of the 4s_1/2-3d_5/2 clock transition, which is a major component of the uncertainty budget. The calculations are based on the relativistic all-order single-double method where all single and double excitations of the Dirac-Fock wave function are included to all orders of perturbation theory. Additional calculations are conducted for the dominant contributions in order to evaluate some omitted high-order corrections and estimate the uncertainties of the final results. The BBR shift obtained for this transition is 0.38(1) Hz. The tensor polarizability of the 3d_5/2 level is also calculated and its uncertainty is evaluated as well. Our results are compared with other calculations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا