ﻻ يوجد ملخص باللغة العربية
GW170817 is the first gravitational wave detection of a binary neutron star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 Mpc. It has been proposed that the observed gamma-ray, X-ray and radio emission is due to an ultra-relativistic jet launched during the merger, directed away from our line of sight. The presence of such a jet is predicted from models positing neutron star mergers as the central engines driving short-hard gamma-ray bursts (SGRBs). Here we show that the radio light curve of GW170817 has no direct signature of an off-axis jet afterglow. While we cannot rule out the existence of a jet pointing elsewhere, the observed gamma-rays could not have originated from such a jet. Instead, the radio data requires a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high velocity tail of the neutron-rich material dynamically ejected during the merger or a cocoon of material that breaks out when a jet transfers its energy to the dynamical ejecta. The cocoon scenario can explain the radio light curve of GW170817 as well as the gamma-rays and X-rays (possibly also ultraviolet and optical emission), and hence is the model most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron star mergers, giving rise to a heretofore unidentified population of radio, ultraviolet, X-ray and gamma-ray transients in the local universe.
The binary neutron star merger GW170817 was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 41+/-3 Mpc. The radio and X-ray afterglows of GW170817 exhibited delayed onset, a gradual r
The binary neutron star (BNS) merger GW170817 was the first astrophysical source detected in gravitational waves and multi-wavelength electromagnetic radiation. The almost simultaneous observation of a pulse of gamma-rays proved that BNS mergers are
The association of GRB170817A with GW170817 has confirmed the long-standing hypothesis that binary neutron star (BNS) mergers are the progenitors of at least some short gamma-ray bursts (SGRBs). This connection has ushered in an era in which broadban
Binary neutron star mergers offer a new and independent means of measuring the Hubble constant $H_0$ by combining the gravitational-wave inferred source luminosity distance with its redshift obtained from electromagnetic follow-up. This method is lim
Although the main features of the evolution of binary neutron star systems are now well established, many details are still subject to debate, especially regarding the post-merger phase. In particular, the lifetime of the hyper-massive neutron stars