ترغب بنشر مسار تعليمي؟ اضغط هنا

Unpaired Photo-to-Caricature Translation on Faces in the Wild

69   0   0.0 ( 0 )
 نشر من قبل Ziqiang Zheng
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, image-to-image translation has been made much progress owing to the success of conditional Generative Adversarial Networks (cGANs). And some unpaired methods based on cycle consistency loss such as DualGAN, CycleGAN and DiscoGAN are really popular. However, its still very challenging for translation tasks with the requirement of high-level visual information conversion, such as photo-to-caricature translation that requires satire, exaggeration, lifelikeness and artistry. We present an approach for learning to translate faces in the wild from the source photo domain to the target caricature domain with different styles, which can also be used for other high-level image-to-image translation tasks. In order to capture global structure with local statistics while translation, we design a dual pathway model with one coarse discriminator and one fine discriminator. For generator, we provide one extra perceptual loss in association with adversarial loss and cycle consistency loss to achieve representation learning for two different domains. Also the style can be learned by the auxiliary noise input. Experiments on photo-to-caricature translation of faces in the wild show considerable performance gain of our proposed method over state-of-the-art translation methods as well as its potential real applications.



قيم البحث

اقرأ أيضاً

Manga is a world popular comic form originated in Japan, which typically employs black-and-white stroke lines and geometric exaggeration to describe humans appearances, poses, and actions. In this paper, we propose MangaGAN, the first method based on Generative Adversarial Network (GAN) for unpaired photo-to-manga translation. Inspired by how experienced manga artists draw manga, MangaGAN generates the geometric features of manga face by a designed GAN model and delicately translates each facial region into the manga domain by a tailored multi-GANs architecture. For training MangaGAN, we construct a new dataset collected from a popular manga work, containing manga facial features, landmarks, bodies, and so on. Moreover, to produce high-quality manga faces, we further propose a structural smoothing loss to smooth stroke-lines and avoid noisy pixels, and a similarity preserving module to improve the similarity between domains of photo and manga. Extensive experiments show that MangaGAN can produce high-quality manga faces which preserve both the facial similarity and a popular manga style, and outperforms other related state-of-the-art methods.
There are demographic biases in current models used for facial recognition (FR). Our Balanced Faces In the Wild (BFW) dataset serves as a proxy to measure bias across ethnicity and gender subgroups, allowing one to characterize FR performances per su bgroup. We show performances are non-optimal when a single score threshold is used to determine whether sample pairs are genuine or imposter. Across subgroups, performance ratings vary from the reported across the entire dataset. Thus, claims of specific error rates only hold true for populations matching that of the validation data. We mitigate the imbalanced performances using a novel domain adaptation learning scheme on the facial features extracted using state-of-the-art. Not only does this technique balance performance, but it also boosts the overall performance. A benefit of the proposed is to preserve identity information in facial features while removing demographic knowledge in the lower dimensional features. The removal of demographic knowledge prevents future potential biases from being injected into decision-making. This removal satisfies privacy concerns. We explore why this works qualitatively; we also show quantitatively that subgroup classifiers can no longer learn from the features mapped by the proposed.
Human vision is often adversely affected by complex environmental factors, especially in night vision scenarios. Thus, infrared cameras are often leveraged to help enhance the visual effects via detecting infrared radiation in the surrounding environ ment, but the infrared videos are undesirable due to the lack of detailed semantic information. In such a case, an effective video-to-video translation method from the infrared domain to the visible light counterpart is strongly needed by overcoming the intrinsic huge gap between infrared and visible fields. To address this challenging problem, we propose an infrared-to-visible (I2V) video translation method I2V-GAN to generate fine-grained and spatial-temporal consistent visible light videos by given unpaired infrared videos. Technically, our model capitalizes on three types of constraints: 1)adversarial constraint to generate synthetic frames that are similar to the real ones, 2)cyclic consistency with the introduced perceptual loss for effective content conversion as well as style preservation, and 3)similarity constraints across and within domains to enhance the content and motion consistency in both spatial and temporal spaces at a fine-grained level. Furthermore, the current public available infrared and visible light datasets are mainly used for object detection or tracking, and some are composed of discontinuous images which are not suitable for video tasks. Thus, we provide a new dataset for I2V video translation, which is named IRVI. Specifically, it has 12 consecutive video clips of vehicle and monitoring scenes, and both infrared and visible light videos could be apart into 24352 frames. Comprehensive experiments validate that I2V-GAN is superior to the compared SOTA methods in the translation of I2V videos with higher fluency and finer semantic details. The code and IRVI dataset are available at https://github.com/BIT-DA/I2V-GAN.
In image-to-image translation, each patch in the output should reflect the content of the corresponding patch in the input, independent of domain. We propose a straightforward method for doing so -- maximizing mutual information between the two, usin g a framework based on contrastive learning. The method encourages two elements (corresponding patches) to map to a similar point in a learned feature space, relative to other elements (other patches) in the dataset, referred to as negatives. We explore several critical design choices for making contrastive learning effective in the image synthesis setting. Notably, we use a multilayer, patch-based approach, rather than operate on entire images. Furthermore, we draw negatives from within the input image itself, rather than from the rest of the dataset. We demonstrate that our framework enables one-sided translation in the unpaired image-to-image translation setting, while improving quality and reducing training time. In addition, our method can even be extended to the training setting where each domain is only a single image.
Face recognition now requires a large number of labelled masked face images in the era of this unprecedented COVID-19 pandemic. Unfortunately, the rapid spread of the virus has left us little time to prepare for such dataset in the wild. To circumven t this issue, we present a 3D model-based approach called WearMask3D for augmenting face images of various poses to the masked face counterparts. Our method proceeds by first fitting a 3D morphable model on the input image, second overlaying the mask surface onto the face model and warping the respective mask texture, and last projecting the 3D mask back to 2D. The mask texture is adapted based on the brightness and resolution of the input image. By working in 3D, our method can produce more natural masked faces of diverse poses from a single mask texture. To compare precisely between different augmentation approaches, we have constructed a dataset comprising masked and unmasked faces with labels called MFW-mini. Experimental results demonstrate WearMask3D produces more realistic masked faces, and utilizing these images for training leads to state-of-the-art recognition accuracy for masked faces.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا