ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental nonlocality-based randomness generation with non-projective measurements

74   0   0.0 ( 0 )
 نشر من قبل Osvaldo Jim\\'enez Far\\'ias Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an optical setup generating more than one bit of randomness from one entangled bit (i.e. a maximally entangled state of two-qubits). The amount of randomness is certified through the observation of Bell non-local correlations. To attain this result we implemented a high-purity entanglement source and a non-projective three-outcome measurement. Our implementation achieves a gain of 27$%$ of randomness as compared with the standard methods using projective measurements. Additionally we estimate the amount of randomness certified in a one-sided device independent scenario, through the observation of EPR steering. Our results prove that non-projective quantum measurements allows extending the limits for nonlocality-based certified randomness generation using current technology.



قيم البحث

اقرأ أيضاً

The intrinsic random nature of quantum physics offers novel tools for the generation of random numbers, a central challenge for a plethora of fields. Bell non-local correlations obtained by measurements on entangled states allow for the generation of bit strings whose randomness is guaranteed in a device-independent manner, i.e. without assumptions on the measurement and state-generation devices. Here, we generate this strong form of certified randomness on a new platform: the so-called instrumental scenario, which is central to the field of causal inference. First, we theoretically show that certified random bits, private against general quantum adversaries, can be extracted exploiting device-independent quantum instrumental-inequality violations. To that end, we adapt techniques previously developed for the Bell scenario. Then, we experimentally implement the corresponding randomness-generation protocol using entangled photons and active feed-forward of information. Moreover, we show that, for low levels of noise, our protocol offers an advantage over the simplest Bell-nonlocality protocol based on the Clauser-Horn-Shimony-Holt inequality.
In a previous paper, we introduced a semi-device-independent scheme consisting of an untrusted source sending quantum states to an untrusted measuring device, with the sole assumption that the average energy of the states emitted by the source is bou nded. Given this energy constraint, we showed that certain correlations between the source and the measuring device can only occur if the outcomes of the measurement are non-deterministic, i.e., these correlations certify the presence of randomness. In the present paper, we go further and show how to quantify the randomness as a function of the correlations and prove the soundness of a QRNG protocol exploiting this relation. For this purpose, we introduce (1) a semidefinite characterization of the set of quantum correlations, (2) an algorithm to lower-bound the Shannon entropy as a function of the correlations and (3) a proof of soundness using finite trials compatible with our energy assumption.
In a measurement-device-independent or quantum-refereed protocol, a referee can verify whether two parties share entanglement or Einstein-Podolsky-Rosen (EPR) steering without the need to trust either of the parties or their devices. The need for tru sting a party is substituted by a quantum channel between the referee and that party, through which the referee encodes the measurements to be performed on that partys subsystem in a set of nonorthogonal quantum states. In this Letter, an EPR-steering inequality is adapted as a quantum-refereed EPR-steering witness, and the trust-free experimental verification of higher dimensional quantum steering is reported via preparing a class of entangled photonic qutrits. Further, with two measurement settings, we extract $1.106pm0.023$ bits of private randomness per every photon pair from our observed data, which surpasses the one-bit limit for projective measurements performed on qubit systems. Our results advance research on quantum information processing tasks beyond qubits.
Quantum networks of growing complexity play a key role as resources for quantum computation; the ability to identify the quality of their internal correlations will play a crucial role in addressing the buiding stage of such states. We introduce a no vel diagnostic scheme for multipartite networks of entangled particles, aimed at assessing the quality of the gates used for the engineering of their state. Using the information gathered from a set of suitably chosen multiparticle Bell tests, we identify conditions bounding the quality of the entangled bonds among the elements of a register. We demonstrate the effectiveness, flexibility, and diagnostic power of the proposed methodology by characterizing a quantum resource engineered combining two-photon hyperentanglement and photonic-chip technology. Our approach is feasible for medium-sized networks due to the intrinsically modular nature of cluster states, and paves the way to section-by-section analysis of large photonics resources.
The detection of nonlocal correlations in a Bell experiment implies almost by definition some intrinsic randomness in the measurement outcomes. For given correlations, or for a given Bell violation, the amount of randomness predicted by quantum physi cs, quantified by the guessing probability, can generally be bounded numerically. However, currently only a few exact analytic solutions are known for violations of the bipartite Clauser-Horne-Shimony-Holt Bell inequality. Here, we study the randomness in a Bell experiment where three parties test the tripartite Mermin-Bell inequality. We give tight upper bounds on the guessing probabilities associated with one and two of the parties measurement outcomes as a function of the Mermin inequality violation. Finally, we discuss the possibility of device-independent secret sharing based on the Mermin inequality and argue that the idea seems unlikely to work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا