ﻻ يوجد ملخص باللغة العربية
In this paper we study the topological invariant ${sf {TC}}(X)$ reflecting the complexity of algorithms for autonomous robot motion. Here, $X$ stands for the configuration space of a system and ${sf {TC}}(X)$ is, roughly, the minimal number of continuous rules which are needed to construct a motion planning algorithm in $X$. We focus on the case when the space $X$ is aspherical; then the number ${sf TC}(X)$ depends only on the fundamental group $pi=pi_1(X)$ and we denote it ${sf TC}(pi)$. We prove that ${sf TC}(pi)$ can be characterised as the smallest integer $k$ such that the canonical $pitimespi$-equivariant map of classifying spaces $$E(pitimespi) to E_{mathcal D}(pitimespi)$$ can be equivariantly deformed into the $k$-dimensional skeleton of $E_{mathcal D}(pitimespi)$. The symbol $E(pitimespi)$ denotes the classifying space for free actions and $E_{mathcal D}(pitimespi)$ denotes the classifying space for actions with isotropy in a certain family $mathcal D$ of subgroups of $pitimespi$. Using this result we show how one can estimate ${sf TC}(pi)$ in terms of the equivariant Bredon cohomology theory. We prove that ${sf TC}(pi) le max{3, {rm cd}_{mathcal D}(pitimespi)},$ where ${rm cd}_{mathcal D}(pitimespi)$ denotes the cohomological dimension of $pitimespi$ with respect to the family of subgroups $mathcal D$. We also introduce a Bredon cohomology refinement of the canonical class and prove its universality. Finally we show that for a large class of principal groups (which includes all torsion free hyperbolic groups as well as all torsion free nilpotent groups) the essential cohomology classes in the sense of Farber and Mescher are exactly the classes having Bredon cohomology extensions with respect to the family $mathcal D$.
A defining feature of sampling-based motion planning is the reliance on an implicit representation of the state space, which is enabled by a set of probing samples. Traditionally, these samples are drawn either probabilistically or deterministically
Motion planning for multi-jointed robots is challenging. Due to the inherent complexity of the problem, most existing works decompose motion planning as easier subproblems. However, because of the inconsistent performance metrics, only sub-optimal so
We define the orbit category for transitive topological groupoids and their equivariant CW-complexes. By using these constructions we define equivariant Bredon homology and cohomology for actions of transitive topological groupoids. We show how these
Anytime sampling-based methods are an attractive technique for solving kino-dynamic motion planning problems. These algorithms scale well to higher dimensions and can efficiently handle state and control constraints. However, an intelligent explorati