ترغب بنشر مسار تعليمي؟ اضغط هنا

Immunity of intersubband polaritons to inhomogeneous broadening

48   0   0.0 ( 0 )
 نشر من قبل Iacopo Carusotto
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate that intersubband (ISB) polaritons are robust to inhomogeneous effects originating from the presence of multiple quantum wells (MQWs). In a series of samples that exhibit mid-infrared ISB absorption transitions with broadenings varying by a factor of 5 (from 4 meV to 20meV), we have observed polariton linewidths always lying in the 4 - 7 meV range only. We have experimentally verified the dominantly inhomogeneous origin of the broadening of the ISB transition, and that the linewidth reduction effect of the polariton modes persists up to room-temperature. This immunity to inhomogeneous broadening is a direct consequence of the coupling of the large number of ISB oscillators to a single photonic mode. It is a precious tool to gauge the natural linewidth of the ISB plasmon , that is otherwise masked in such MQWs system , and is also beneficial in view of perspective applications such as intersubband polariton lasers.



قيم البحث

اقرأ أيضاً

Three problems are considered in which inhomogeneous broadening can yield unusual consequences. One problem involves the energy levels of atoms moving within nanopores of nearly cylindrical cross section. A second involves atomic or molecular motion in a quasi-one dimensional interstitial channel within a bundle of carbon nanotubes. The third problem involves motion within a groove between two nanotubes at the surface of such a bundle. In each case, the density of states at low energy is qualitatively different from that occurring in the perfectly homogeneous case.
We demonstrate room-temperature strong-coupling between a mid-infrared ($lambda$=9.9 $mu$m) intersubband transition and the fundamental cavity mode of a metal-insulator-metal resonator. Patterning of the resonator surface enables surface-coupling of the radiation and introduces an energy dispersion which can be probed with angle-resolved reflectivity. In particular, the polaritonic dispersion presents an accessible energy minimum at k=0 where - potentially - polaritons can accumulate. We also show that it is possible to maximize the coupling of photons into the polaritonic states and - simultaneously - to engineer the position of the minimum Rabi splitting at a desired value of the in-plane wavevector. This can be precisely accomplished via a simple post-processing technique. The results are confirmed using the temporal coupled mode theory formalism and their significance in the context of the concept of strong critical coupling is highlighted.
We investigate theoretically the effect of a magnetic field on intersubband polaritons in an asymmetric quantum well placed inside an optical resonator. It is demonstrated that the field-induced diamagnetic shift of electron subbands in the well incr eases the broadening of optical lines corresponding to intersubband electron transitions. As a consequence, the magnetic field can switch the polariton system from the regime of strong light-matter coupling to the regime of weak one. This effect paves a way to the effective control of polaritonic devices with a magnetic field.
We report on calculations of broadening effects in QCL due to alloy scattering. The output of numerical calculations of alloy broadened Landau levels compare favorably with calculations performed at the self-consistent Born approximation. Results for Landau level width and optical absorption are presented. A disorder activated forbidden transition becomes significant in the vicinity of crossings of Landau levels which belong to different subbands. A study of the time dependent survival probability in the lowest Landau level of the excited subband is performed. It is shown that at resonance the population relaxation occurs in a subpicosecond scale.
New effects of polarization multistability and polarization hysteresis in a coherently driven polariton condensate in a semiconductor microcavity are predicted and theoretically analyzed. The multistability arises due to polarization-dependent polari ton-polariton interactions and can be revealed in polarization resolved photoluminescence experiments. The pumping power required to observe this effect is of 4 orders of magnitude lower than the characteristic pumping power in conventional bistable optical systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا