ترغب بنشر مسار تعليمي؟ اضغط هنا

A clustered origin for isolated massive stars

106   0   0.0 ( 0 )
 نشر من قبل William Lucas
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-mass stars are commonly found in stellar clusters promoting the idea that their formation occurs due to the physical processes linked with a young stellar cluster. It has recently been reported that isolated high-mass stars are present in the Large Magellanic Cloud. Due to their low velocities it has been argued that these are high-mass stars which formed without a surrounding stellar cluster. In this paper we present an alternative explanation for the origin of these stars in which they formed in a cluster environment but are subsequently dispersed into the field as their natal cluster is tidally disrupted in a merger with a higher-mass cluster. They escape the merged cluster with relatively low velocities typical of the cluster interaction and thus of the larger scale velocity dispersion, similarly to the observed stars. $N$-body simulations of cluster mergers predict a sizeable population of low velocity ($le$ 20 km s$^{-1}$), high-mass stars at distances of > 20 pc from the cluster. High-mass clusters in which gas poor mergers are frequent would be expected to commonly have halos of young stars, including high-mass stars, that were actually formed in a cluster environment.



قيم البحث

اقرأ أيضاً

We address the problem of the origin of massive stars, namely the origin, path and timescale of the mass flows that create them. Based on extensive numerical simulations, we propose a scenario where massive stars are assembled by large-scale, converg ing, inertial flows that naturally occur in supersonic turbulence. We refer to this scenario of massive-star formation as the Inertial-Inflow Model. This model stems directly from the idea that the mass distribution of stars is primarily the result of turbulent fragmentation. Under this hypothesis, the statistical properties of the turbulence determine the formation timescale and mass of prestellar cores, posing definite constraints on the formation mechanism of massive stars. We quantify such constraints by the analysis of a simulation of supernova-driven turbulence in a 250-pc region of the interstellar medium, describing the formation of hundreds of massive stars over a time of approximately 30 Myr. Due to the large size of our statistical sample, we can say with full confidence that massive stars in general do not form from the collapse of massive cores, nor from competitive accretion, as both models are incompatible with the numerical results. We also compute synthetic continuum observables in Herschel and ALMA bands. We find that, depending on the distance of the observed regions, estimates of core mass based on commonly-used methods may exceed the actual core masses by up to two orders of magnitude, and that there is essentially no correlation between estimated and real core masses.
Many galaxies host pronounced circumnuclear starbursts, fuelled by infalling gas. Such activity is expected to drive the secular evolution of the nucleus and generate super winds, while the intense radiation fields and extreme gas and cosmic ray dens ities present may act to modify the outcome of star formation with respect to more quiescent galactic regions. The centre of the Milky Way is the only example of this phenomenon where, by virtue of its proximity, individual stars may be resolved. Previous studies have revealed that it hosts a rich population of massive stars; these are located within three clusters, with an additional contingent dispersed throughout the Central Molecular Zone (CMZ). We employed VLT+KMOS to obtain homogeneous, high S/N spectroscopy of the later cohort for classification and quantitative analysis. Including previously identified examples, we found a total of 83 isolated massive stars within the Galactic Centre, which are biased towards objects supporting powerful stellar winds and/or extensive circumstellar envelopes. No further stellar clusters, or their tidally stripped remnants, were identified, although an apparent stellar overdensity was found to be coincident with the Sgr B1 star forming region. The cohort of isolated massive stars within the CMZ is comparable in size to that of the known clusters but, due to observational biases, is likely highly incomplete at this time. Combining both populations yields over 320 spectroscopically classified stars that are expected to undergo core collapse within the next 20Myr. Given that this is presumably an underestimate of the true number, the population of massive stars associated with the CMZ appears unprecedented amongst star formation complexes within the Milky Way, and one might anticipate that they play a substantial role in the energetics and evolution of the nuclear region.
We present the Stromlo Stellar Tracks, a set of stellar evolutionary tracks, computed by modifying the Modules for Experiments in Stellar Astrophysics (MESA) 1D stellar evolution package, to fit the Galactic Concordance abundances for hot ($T > 8000$ K) massive ($geq 10M_odot$) Main-Sequence (MS) stars. Until now, all stellar evolution tracks are computed at solar, scaled-solar, or alpha-element enhanced abundances, and none of these models correctly represent the Galactic Concordance abundances at different metallicities. This paper is the first implementation of Galactic Concordance abundances to the stellar evolution models. The Stromlo tracks cover massive stars ($10leq M/M_odot leq 300$) with varying rotations ($v/v_{rm crit} = 0.0, 0.2, 0.4$) and a finely sampled grid of metallicities ($-2.0 leq {rm [Z/H]} leq +0.5$; $Delta {rm [Z/H]} = 0.1$) evolved from the pre-main sequence to the end of $^{12}$Carbon burning. We find that the implementation of Galactic Concordance abundances is critical for the evolution of main-sequence, massive hot stars in order to estimate accurate stellar outputs (L, T$_{rm eff}$, $g$), which, in turn, have a significant impact on determining the ionizing photon luminosity budgets. We additionally support prior findings of the importance that rotation plays on the evolution of massive stars and their ionizing budget. The evolutionary tracks for our Galactic Concordance abundance scaling provide a more empirically motivated approach than simple uniform abundance scaling with metallicity for the analysis of HII regions and have considerable implications in determining nebular emission lines and metallicity. Therefore, it is important to refine the existing stellar evolutionary models for comprehensive high-redshift extragalactic studies. The Stromlo tracks are publicly available to the astronomical community online.
We analyse N-body and Smoothed Particle Hydrodynamic (SPH) simulations of young star-forming regions to search for differences in the spatial distributions of massive stars compared to lower-mass stars. The competitive accretion theory of massive sta r formation posits that the most massive stars should sit in deeper potential wells than lower-mass stars. This may be observable in the relative surface density or spatial concentration of the most massive stars compared to other, lower-mass stars. Massive stars in cool--collapse N-body models do end up in significantly deeper potentials, and are mass segregated. However, in models of warm (expanding) star-forming regions, whilst the massive stars do come to be in deeper potentials than average stars, they are not mass segregated. In the purely hydrodynamical SPH simulations, the massive stars do come to reside in deeper potentials, which is due to their runaway growth. However, when photoionisation and stellar winds are implemented in the simulations, these feedback mechanisms regulate the mass of the stars and disrupt the inflow of gas into the clouds potential wells. This generally makes the potential wells shallower than in the control runs, and prevents the massive stars from occupying deeper potentials. This in turn results in the most massive stars having a very similar spatial concentration and surface density distribution to lower-mass stars. Whilst massive stars do form via competitive accretion in our simulations, this rarely translates to a different spatial distribution and so any lack of primordial mass segregation in an observed star-forming region does not preclude competitive accretion as a viable formation mechanism for massive stars.
124 - Adriana M. Pires 2009
The relatively large number of nearby radio-quiet and thermally emitting isolated neutron stars (INSs) discovered in the ROSAT All-Sky Survey, dubbed the ``Magnificent Seven (M7), suggests that they belong to a formerly neglected major component of t he overall INS population. So far, attempts to discover similar INSs beyond the solar vicinity failed to confirm any reliable candidate. The EPIC cameras onboard the XMM-Newton satellite allow to efficiently search for new thermally emitting INSs. We used the 2XMMp catalogue to select sources with no catalogued candidate counterparts and with X-ray spectra similar to those of the M7, but seen at greater distances and thus undergoing higher interstellar absorptions. Identifications in more than 170 astronomical catalogues and visual screening allowed to select fewer than 30 good INS candidates. In order to rule out alternative identifications, we obtained deep ESO-VLT and SOAR optical imaging for the X-ray brightest candidates. We report here on the optical follow-up results of our search and discuss the possible nature of 8 of our candidates. A high X-ray-to-optical flux ratio together with a stable flux and soft X-ray spectrum make the brightest source of our sample, 2XMM J104608.7-594306, a newly discovered thermally emitting INS. The X-ray source 2XMM J010642.3+005032 has no evident optical counterpart and should be further investigated. The remaining X-ray sources are most probably identified with CVs and AGN, as inferred from the colours and flux ratios of their likely optical counterparts. Beyond the finding of new thermally emitting INSs, our study aims at constraining the space density of this Galactic population at great distances and at determining whether their apparently high density is a local anomaly or not.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا