ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean Energy Density of Photogenerated Magnetic Fields Throughout the Epoch of Reionization

48   0   0.0 ( 0 )
 نشر من قبل Jean-Baptiste Durrive
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic fields are ubiquitous in the Universe. They seem to be present at virtually all scales and all epochs. Yet, whether the fields on cosmological scales are of astrophysical or cosmological origin remains an open major problem. Here we focus on an astrophysical mechanism based on the photoionization of the intergalactic medium during the Epoch of Reionization. Building upon previous studies that depicted the physical mechanism around isolated sources of ionization, we present here an analytic model to estimate the level at which this mechanism contributed to the magnetization of the whole Universe, thanks to the distribution of sources, before and alongside early luminous structure formation. This model suggests that the Universe may be globally magnetized to the order of, at least, a few $10^{-20}$~G comoving (i.e. several $10^{-18}$~G during the Epoch of Reionization) by this mechanism, prior to any amplification process.

قيم البحث

اقرأ أيضاً

The implication of primordial magnetic-field-induced structure formation for the HI signal from the epoch of reionization is studied. Using semi-analytic models, we compute both the density and ionization inhomogeneities in this scenario. We show tha t: (a) The global HI signal can only be seen in emission, unlike in the standard $Lambda$CDM models, (b) the density perturbations induced by primordial fields, leave distinctive signatures of the magnetic field Jeans length on the HI two-point correlation function, (c) the length scale of ionization inhomogeneities is $la 1 rm Mpc$. We find that the peak expected signal (two-point correlation function) is $simeq 10^{-4} rm K^2$ in the range of scales $0.5hbox{-}3 rm Mpc$ for magnetic field strength in the range $5 times 10^{-10} hbox{-}3 times 10^{-9} rm G$. We also discuss the detectability of the HI signal. The angular resolution of the on-going and planned radio interferometers allows one to probe only the largest magnetic field strengths that we consider. They have the sensitivity to detect the magnetic field-induced features. We show that thefuture SKA has both the angular resolution and the sensitivity to detect the magnetic field-induced signal in the entire range of magnetic field values we consider, in an integration time of one week.
In the first paper of this series, we proposed a novel method to probe large-scale intergalactic magnetic fields during the cosmic Dark Ages, using 21-cm tomography. This method relies on the effect of spin alignment of hydrogen atoms in a cosmologic al setting, and on the effect of magnetic precession of the atoms on the statistics of the 21-cm brightness-temperature fluctuations. In this paper, we forecast the sensitivity of future tomographic surveys to detecting magnetic fields using this method. For this purpose, we develop a minimum-variance estimator formalism to capture the characteristic anisotropy signal using the two-point statistics of the brightness-temperature fluctuations. We find that, depending on the reionization history, and subject to the control of systematics from foreground subtraction, an array of dipole antennas in a compact-grid configuration with a collecting area slightly exceeding one square kilometer can achieve a $1sigma$ detection of $sim$$10^{-21}$ Gauss comoving (scaled to present-day value) within three years of observation. Using this method, tomographic 21-cm surveys could thus probe ten orders of magnitude below current CMB constraints on primordial magnetic fields, and provide exquisite sensitivity to large-scale magnetic fields in situ at high redshift.
The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multi-wavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcminute-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 $mu$m. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at $z$ > 8 to be $log rho_{rm UV} = 27.4^{+0.2}_{-1.2}$ erg s$^{-1}$ Hz$^{-1}$ Mpc$^{-3}$ $(1sigma)$. This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point source detection level in current surveys.
93 - Wenxiao Xu , Yidong Xu , Bin Yue 2019
The neutral hydrogen (HI) and its 21 cm line are promising probes to the reionization process of the intergalactic medium (IGM). To use this probe effectively, it is imperative to have a good understanding on how the neutral hydrogen traces the under lying matter distribution. Here we study this problem using semi-numerical modeling by combining the HI in the IGM and the HI from halos during the epoch of reionization (EoR), and investigate the evolution and the scale-dependence of the neutral fraction bias as well as the 21 cm line bias. We find that the neutral fraction bias on large scales is negative during reionization, and its absolute value on large scales increases during the early stage of reionization and then decreases during the late stage. During the late stage of reionization, there is a transition scale at which the HI bias transits from negative on large scales to positive on small scales, and this scale increases as the reionization proceeds to the end.
70 - Anv{z}e Slosar 2016
The motion of the solar system with respect to the cosmic rest frame modulates the monopole of the Epoch of Reionization 21-cm signal into a dipole. This dipole has a characteristic frequency dependence that is dominated by the frequency derivative o f the monopole signal. We argue that although the signal is weaker by a factor of $sim100$, there are significant benefits in measuring the dipole. Most importantly, the direction of the cosmic velocity vector is known exquisitely well from the cosmic microwave background and is not aligned with the galaxy velocity vector that modulates the foreground monopole. Moreover, an experiment designed to measure a dipole can rely on differencing patches of the sky rather than making an absolute signal measurement, which helps with some systematic effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا