ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetries and regularity for holomorphic maps between balls

126   0   0.0 ( 0 )
 نشر من قبل John D'Angelo
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $f:{mathbb B}^n to {mathbb B}^N$ be a holomorphic map. We study subgroups $Gamma_f subseteq {rm Aut}({mathbb B}^n)$ and $T_f subseteq {rm Aut}({mathbb B}^N)$. When $f$ is proper, we show both these groups are Lie subgroups. When $Gamma_f$ contains the center of ${bf U}(n)$, we show that $f$ is spherically equivalent to a polynomial. When $f$ is minimal we show that there is a homomorphism $Phi:Gamma_f to T_f$ such that $f$ is equivariant with respect to $Phi$. To do so, we characterize minimality via the triviality of a third group $H_f$. We relate properties of ${rm Ker}(Phi)$ to older results on invariant proper maps between balls. When $f$ is proper but completely non-rational, we show that either both $Gamma_f$ and $T_f$ are finite or both are noncompact.

قيم البحث

اقرأ أيضاً

We make several new contributions to the study of proper holomorphic mappings between balls. Our results include a degree estimate for rational proper maps, a new gap phenomenon for convex families of arbitrary proper maps, and an interesting result about inverse images.
94 - Ning Zhang 2021
Let $mathcal{G}$ resp. $M$ be a positive dimensional Lie group resp. connected complex manifold without boundary and $V$ a finite dimensional $C^{infty}$ compact connected manifold, possibly with boundary. Fix a smoothness class $mathcal{F}=C^{infty} $, Holder $C^{k, alpha}$ or Sobolev $W^{k, p}$. The space $mathcal{F}(V, mathcal{G})$ resp. $mathcal{F}(V, M)$ of all $mathcal{F}$ maps $V to mathcal{G}$ resp. $V to M$ is a Banach/Frechet Lie group resp. complex manifold. Let $mathcal{F}^0(V, mathcal{G})$ resp. $mathcal{F}^{0}(V, M)$ be the component of $mathcal{F}(V, mathcal{G})$ resp. $mathcal{F}(V, M)$ containing the identity resp. constants. A map $f$ from a domain $Omega subset mathcal{F}_1(V, M)$ to $mathcal{F}_2(W, M)$ is called range decreasing if $f(x)(W) subset x(V)$, $x in Omega$. We prove that if $dim_{mathbb{R}} mathcal{G} ge 2$, then any range decreasing group homomorphism $f: mathcal{F}_1^0(V, mathcal{G}) to mathcal{F}_2(W, mathcal{G})$ is the pullback by a map $phi: W to V$. We also provide several sufficient conditions for a range decreasing holomorphic map $Omega$ $to$ $mathcal{F}_2(W, M)$ to be a pullback operator. Then we apply these results to study certain decomposition of holomorphic maps $mathcal{F}_1(V, N) supset Omega to mathcal{F}_2(W, M)$. In particular, we identify some classes of holomorphic maps $mathcal{F}_1^{0}(V, mathbb{P}^n) to mathcal{F}_2(W, mathbb{P}^m)$, including all automorphisms of $mathcal{F}^{0}(V, mathbb{P}^n)$.
We construct a complete proper holomorphic embedding from any strictly pseudoconvex domain with $mathcal{C}^2$-boundary in $mathbb{C}^n$ into the unit ball of $mathbb{C}^N$, for $N$ large enough, thereby answering a question of Alarcon and Forstneric.
We survey recent work and announce new results concerning two singular integral operators whose kernels are holomorphic functions of the output variable, specifically the Cauchy-Leray integral and the Cauchy-SzegH o projection associated to various c lasses of bounded domains in $mathbb C^n$ with $ngeq 2$.
We continue the studies of Moutard-type transform for generalized analytic functions started in our previous paper: arXiv:1510.08764. In particular, we suggest an interpretation of generalized analytic functions as spinor fields and show that in the framework of this approach Moutard-type transforms for the aforementioned functions commute with holomorphic changes of variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا