ترغب بنشر مسار تعليمي؟ اضغط هنا

Grammatical facial expression recognition using customized deep neural network architecture

101   0   0.0 ( 0 )
 نشر من قبل Devesh Walawalkar
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Devesh Walawalkar




اسأل ChatGPT حول البحث

This paper proposes to expand the visual understanding capacity of computers by helping it recognize human sign language more efficiently. This is carried out through recognition of facial expressions, which accompany the hand signs used in this language. This paper specially focuses on the popular Brazilian sign language (LIBRAS). While classifying different hand signs into their respective word meanings has already seen much literature dedicated to it, the emotions or intention with which the words are expressed havent primarily been taken into consideration. As from our normal human experience, words expressed with different emotions or mood can have completely different meanings attached to it. Lending computers the ability of classifying these facial expressions, can help add another level of deep understanding of what the deaf person exactly wants to communicate. The proposed idea is implemented through a deep neural network having a customized architecture. This helps learning specific patterns in individual expressions much better as compared to a generic approach. With an overall accuracy of 98.04%, the implemented deep network performs excellently well and thus is fit to be used in any given practical scenario.



قيم البحث

اقرأ أيضاً

This paper describes the proposed methodology, data used and the results of our participation in the ChallengeTrack 2 (Expr Challenge Track) of the Affective Behavior Analysis in-the-wild (ABAW) Competition 2020. In this competition, we have used a p roposed deep convolutional neural network (CNN) model to perform automatic facial expression recognition (AFER) on the given dataset. Our proposed model has achieved an accuracy of 50.77% and an F1 score of 29.16% on the validation set.
Facial expression recognition is a challenging task, arguably because of large intra-class variations and high inter-class similarities. The core drawback of the existing approaches is the lack of ability to discriminate the changes in appearance cau sed by emotions and identities. In this paper, we present a novel identity-enhanced network (IDEnNet) to eliminate the negative impact of identity factor and focus on recognizing facial expressions. Spatial fusion combined with self-constrained multi-task learning are adopted to jointly learn the expression representations and identity-related information. We evaluate our approach on three popular datasets, namely Oulu-CASIA, CK+ and MMI. IDEnNet improves the baseline consistently, and achieves the best or comparable state-of-the-art on all three datasets.
In this paper, covariance matrices are exploited to encode the deep convolutional neural networks (DCNN) features for facial expression recognition. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By performing the classification of the facial expressions using Gaussian kernel on SPD manifold, we show that the covariance descriptors computed on DCNN features are more efficient than the standard classification with fully connected layers and softmax. By implementing our approach using the VGG-face and ExpNet architectures with extensive experiments on the Oulu-CASIA and SFEW datasets, we show that the proposed approach achieves performance at the state of the art for facial expression recognition.
Engagement is a key indicator of the quality of learning experience, and one that plays a major role in developing intelligent educational interfaces. Any such interface requires the ability to recognise the level of engagement in order to respond ap propriately; however, there is very little existing data to learn from, and new data is expensive and difficult to acquire. This paper presents a deep learning model to improve engagement recognition from images that overcomes the data sparsity challenge by pre-training on readily available basic facial expression data, before training on specialised engagement data. In the first of two steps, a facial expression recognition model is trained to provide a rich face representation using deep learning. In the second step, we use the models weights to initialize our deep learning based model to recognize engagement; we term this the engagement model. We train the model on our new engagement recognition dataset with 4627 engaged and disengaged samples. We find that the engagement model outperforms effective deep learning architectures that we apply for the first time to engagement recognition, as well as approaches using histogram of oriented gradients and support vector machines.
We present an approach that combines automatic features learned by convolutional neural networks (CNN) and handcrafted features computed by the bag-of-visual-words (BOVW) model in order to achieve state-of-the-art results in facial expression recogni tion. To obtain automatic features, we experiment with multiple CNN architectures, pre-trained models and training procedures, e.g. Dense-Sparse-Dense. After fusing the two types of features, we employ a local learning framework to predict the class label for each test image. The local learning framework is based on three steps. First, a k-nearest neighbors model is applied in order to select the nearest training samples for an input test image. Second, a one-versus-all Support Vector Machines (SVM) classifier is trained on the selected training samples. Finally, the SVM classifier is used to predict the class label only for the test image it was trained for. Although we have used local learning in combination with handcrafted features in our previous work, to the best of our knowledge, local learning has never been employed in combination with deep features. The experiments on the 2013 Facial Expression Recognition (FER) Challenge data set, the FER+ data set and the AffectNet data set demonstrate that our approach achieves state-of-the-art results. With a top accuracy of 75.42% on FER 2013, 87.76% on the FER+, 59.58% on AffectNet 8-way classification and 63.31% on AffectNet 7-way classification, we surpass the state-of-the-art methods by more than 1% on all data sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا