ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoplasmonic Enhancement of Faraday Rotation in Patterned Graphene Metasurfaces

39   0   0.0 ( 0 )
 نشر من قبل Michele Tamagnone
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Faraday rotation is a fundamental property present in all non-reciprocal optical elements. In the THz range, graphene displays strong Faraday rotation; unfortunately, it is limited to frequencies below the cyclotron resonance. Here we show experimentally that in specifically design metasurfaces, magneto-plasmons can be used to circumvent this limitation. We find excellent agreement between theory and experiment and provide new physical insights and predictions on these phenomena. Finally, we demonstrate strong tuneability in these metasurfaces using electric and magnetic field biasing.

قيم البحث

اقرأ أيضاً

A single graphene sheet, when subjected to a perpendicular static magnetic field provides Faraday rotation that, per atomic layer, greatly surpasses that of any other known material. This Giant Faraday rotation originates from the cyclotron resonance of massless electrons, which allows dynamical tuning through either external electrostatic or magnetostatic setting. Furthermore, the rotation direction can be controlled by changing the sign of the carriers in graphene, which can be done by means of an external electric field. However, despite these tuning possibilities, the requirement of large magnetic fields hinders application of the Faraday effect in real devices, especially for frequencies higher than few THz. In this work we demonstrate that, for a given value of the static external magnetic field, giant Faraday rotation can be achieved in arrays of graphene microribbons at frequencies much higher than the corresponding cyclotron frequency. The main feature in the magneto-optical response of graphene ribbons is not associated with the cyclotron resonance but rather with the fundamental magnetoplasmon excitation of a single ribbon. The magnetoplasmon nature of Faraday rotation in graphene ribbons opens great possibilities, as the resonance frequency can be locally selected by appropriately choosing the width of the ribbon while still preserving the tuning capability through a (smaller) external magnetic field.
97 - C. Sorger , S. Preu , J. Schmidt 2014
We study the interaction between polarized terahertz (THz) radiation and micro-structured large-area graphene in transmission geometry. In order to efficiently couple the radiation into the two-dimensional material, a lateral periodic patterning of a closed graphene sheet by intercalation doping into stripes is chosen, yielding unequal transmittance of the radiation polarized parallel and perpendicular to the stripes. Indeed, a polarization contrast up to 20% is observed. The effect even increases up to 50% when removing graphene stripes in analogy to a wire grid polarizer. The polarization dependence is analyzed in a large frequency range from < 80 GHz to 3 THz, including the plasmon-polariton resonance. The results are in excellent agreement with theoretical calculations based on the electronic energy spectrum of graphene and the electrodynamics of the patterned structure.
106 - Z. B. Tan , A. Puska , T. Nieminen 2013
We have investigated shot noise and conductance of multi-terminal graphene nanoribbon devices at temperatures down to 50 mK. Away from the charge neutrality point, we find a Fano factor $F approx 0.4$, nearly independent of the charge density. Our sh ot noise results are consistent with theoretical models for disordered graphene ribbons with a dimensionless scattering strength $K_0 approx 10$ corresponding to rather strong disorder. Close to charge neutrality, an increase in $F$ up to $sim 0.7$ is found, which indicates the presence of a dominant Coulomb gap possibly due to a single quantum dot in the transport gap.
Large surface plasmon polariton assisted enhancement of the magneto-optical activity has been observed in the past, through spectral measurements of the polar Kerr rotation in Co hexagonal antidot arrays. Here, we report a strong thickness dependence , which is unexpected given that the Kerr effect is considered a surface sensitive phenomena. The maximum Kerr rotation was found to be -0.66 degrees for a 100 nm thick sample. This thickness is far above the typical optical penetration depth of a continuous Co film, demonstrating that in the presence of plasmons the critical lengthscales are dramatically altered, and in this case extended. We therefore establish that the plasmon enhanced Kerr effect does not only depend on the in-plane structuring of the sample, but also on the out-of-plane geometrical parameters, which is an important consideration in magnetoplasmonic device design.
128 - Shao-Wen Chen , Ren-Bao Liu 2014
Central spin decoherence is useful for detecting many-body physics in environments and moreover, the spin echo control can remove the effects of static thermal fluctuations so that the quantum fluctuations are revealed. The central spin decoherence a pproach, however, is feasible only in some special configurations and often requires uniform coupling between the central spin and individual spins in the baths, which are very challenging in experiments. Here, by making analogue between central spin decoherence and depolarization of photons, we propose a scheme of Faraday rotation echo spectroscopy (FRES) for studying quantum fluctuations in interacting spin systems. The echo control of the photon polarization is realized by flipping the polarization with a birefringence crystal. The FRES, similar to spin echo in magnetic resonance spectroscopy, can suppress the effects of the static magnetic fluctuations and therefore reveal dynamical magnetic fluctuations. We apply the scheme to a rare-earth compound LiHoF4 and calculate the echo signal, which is related to the quantum fluctuations of the system. We observe enhanced signals at the phase boundary. The FRES should be useful for studying quantum fluctuations in a broad range of spin systems, including cold atoms, quantum dots, solid-state impurities, and transparent magnetic materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا