ﻻ يوجد ملخص باللغة العربية
We report on ultrafast electron diffraction on high quality single crystal silicon. The ultrafast dynamics of the Bragg peaks exhibits a giant photo-induced response which can only be explained in the framework of dynamical diffraction theory, taking into account multiple scattering of the probing electrons in the sample. In particular, we show that lattice heating following photo-excitation can cause an unexpected increase of the Bragg peak intensities, in contradiction with the well-known Debye-Waller effect. We anticipate that multiple scattering should be systematically considered in ultrafast electron diffraction on high quality crystals as it dominates the Bragg peak dynamics. In addition, taking into account multiple scattering effects opens the way to quantitative studies of non-equilibrium dynamics of defects in quasi-perfect crystals.
We report the lattice dynamics of transition metal thin films by using the ultrafast electron diffraction. We observe a suppression of the diffraction intensity in a few picosecond after the photoexcitation, which is directly interpreted as the latti
Bandstructure effects in the electronic transport of strongly quantized silicon nanowire field-effect-transistors (FET) in various transport orientations are examined. A 10-band sp3d5s* semi-empirical atomistic tight-binding model coupled to a self c
A foundation of the modern technology that uses single-crystal silicon has been the growth of high-quality single-crystal Si ingots with diameters up to 12 inches or larger. For many applications of graphene, large-area high-quality (ideally of singl
It has been technically challenging to concurrently probe the electrons and the lattices in materials during non-equilibrium processes, allowing their correlations to be determined. Here, in a single set of ultrafast electron diffraction patterns tak
This paper presents results of a recent study of multiferroic CCO by means of single crystal neutron diffraction. This system has two close magnetic phase transitions at $T sub{N1}=24.2$ K and $T sub{N2}=23.6$ K. The low temperature magnetic structur