ترغب بنشر مسار تعليمي؟ اضغط هنا

THROES: a caTalogue of HeRschel Observations of Evolved Stars. I. PACS range spectroscopy

100   0   0.0 ( 0 )
 نشر من قبل Jes\\'us Ramos-Medina
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J. Ramos-Medina




اسأل ChatGPT حول البحث

This is the first of a series of papers presenting the THROES (A caTalogue of HeRschel Observations of Evolved Stars) project, intended to provide a comprehensive overview of the spectroscopic results obtained in the far-infrared (55-670 microns) with the Her- schel space observatory on low-to-intermediate mass evolved stars in our Galaxy. Here we introduce the catalogue of interactively reprocessed PACS (Photoconductor Array Camera and Spectrometer) spectra covering the 55-200 microns range for 114 stars in this category for which PACS range spectroscopic data is available in the Herschel Science Archive (HSA). Our sample includes objects spanning a range of evolutionary stages, from the asymptotic giant branch to the planetary nebula phase, displaying a wide variety of chemical and physical properties. The THROES/PACS catalogue is accessible via a dedicated web-based inter- face (https://throes.cab.inta-csic.es/) and includes not only the science-ready Herschel spectroscopic data for each source, but also complementary photometric and spectroscopic data from other infrared observatories, namely IRAS (Infrared Astronomical Satellite), ISO (Infrared Space Observatory) or AKARI, at overlapping wavelengths. Our goal is to create a legacy-value Herschel dataset that can be used by the scientific community in the future to deepen our knowledge and understanding of these latest stages of the evolution of low-to-intermediate mass stars.

قيم البحث

اقرأ أيضاً

Context: At the end of their lives AGB stars are prolific producers of dust and gas. The details of this mass-loss process are still not understood very well. Herschel PACS and SPIRE spectra offer a unique way of investigating properties of AGB stars in general and the mass-loss process in particular. Methods: The HIPE software with the latest calibration is used to process the available PACS and SPIRE spectra of 40 evolved stars. The spectra are convolved with the response curves of the PACS and SPIRE bolometers and compared to the fluxes measured in imaging data of these sources. Custom software is used to identify lines in the spectra, and to determine the central wavelengths and line intensities. Standard molecular line databases are used to associate the observed lines. Because of the limited spectral resolution of the spectrometers several known lines are typically potential counterparts to any observed line. To help identifications the relative contributions in line intensity of the potential counterpart lines are listed for three characteristic temperatures based on LTE calculations and assuming optically thin emission. Result: The following data products are released: the reduced spectra, the lines that are measured in the spectra with wavelength, intensity, potential identifications, and the continuum spectra, i.e. the full spectra with all identified lines removed. As simple examples of how this data can be used in future studies we have fitted the continuum spectra with three power laws and find that the few OH/IR stars seem to have significantly steeper slopes than the other oxygen- and carbon-rich objects in the sample. As another example we constructed rotational diagrams for CO and fitted a two-component model to derive rotational temperatures.
We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67-72 $mu$m. This wavelength range covers the 69 $mu$m band of crystalline olivine ($text{Mg}_{2-2x}text{Fe}_{(2x)}text{SiO}_{4}$). The width and wavelength position of t his band are sensitive to the temperature and composition of the crystalline olivine. Our sample covers a wide range of objects: from high mass-loss rate AGB stars (OH/IR stars, $dot M ge 10^{-5}$ M$_odot$/yr), through post-AGB stars with and without circumbinary disks, to planetary nebulae and even a few massive evolved stars. The goal of this study is to exploit the spectral properties of the 69 $mu$m band to determine the composition and temperature of the crystalline olivine. Since the objects cover a range of evolutionary phases, we study the physical and chemical properties in this range of physical environments. We fit the 69 $mu$m band and use its width and position to probe the composition and temperature of the crystalline olivine. For 27 sources in the sample, we detected the 69 $mu$m band of crystalline olivine ($text{Mg}_{(2-2x)}text{Fe}_{(2x)}text{SiO}_{4}$). The 69 $mu$m band shows that all the sources produce pure forsterite grains containing no iron in their lattice structure. The temperature of the crystalline olivine as indicated by the 69 $mu$m band, shows that on average the temperature of the crystalline olivine is highest in the group of OH/IR stars and the post-AGB stars with confirmed Keplerian disks. The temperature is lower for the other post-AGB stars and lowest for the planetary nebulae. A couple of the detected 69 $mu$m bands are broader than those of pure magnesium-rich crystalline olivine, which we show can be due to a temperature gradient in the circumstellar environment of these stars. continued...
Our aims are to determine flux densities and their photometric accuracy for a set of seventeen stars that range in flux from intermediately bright (<2.5 Jy) to faint (>5 mJy) in the far-infrared (FIR). We also aim to derive signal-to-noise dependence with flux and time, and compare the results with predictions from the Herschel exposure-time calculation tool. The PACS faint star sample has allowed a comprehensive sensitivity assessment of the PACS photometer. Accurate photometry allows us to establish a set of five FIR primary standard candidates, namely alpha Ari, epsilon Lep, omega,Cap, HD41047 and 42Dra, which are 2 -- 20 times fainter than the faintest PACS fiducial standard (gamma Dra) with absolute accuracy of <6%. For three of these primary standard candidates, essential stellar parameters are known, meaning that a dedicated flux model code may be run.
We present emph{Herschel} PACS observations of 8 Classical T Tauri Stars in the $sim 7-10$ Myr old OB1a and the $sim 4-5$ Myr old OB1b Orion sub-asscociations. Detailed modeling of the broadband spectral energy distributions, particularly the strong silicate emission at 10 $mu$m, shows that these objects are (pre)transitional disks with some amount of small optically thin dust inside their cavities, ranging from $sim 4$ AU to $sim 90$ AU in size. We analyzed emph{Spitzer} IRS spectra for two objects in the sample: CVSO-107 and CVSO-109. The IRS spectrum of CVSO-107 indicates the presence of crystalline material inside its gap while the silicate feature of CVSO-109 is characterized by a pristine profile produced by amorphous silicates; the mechanisms creating the optically thin dust seem to depend on disk local conditions. Using millimeter photometry we estimated dust disk masses for CVSO-107 and CVSO-109 lower than the minimum mass of solids needed to form the planets in our Solar System, which suggests that giant planet formation should be over in these disks. We speculate that the presence and maintenance of optically thick material in the inner regions of these pre-transitional disks might point to low-mass planet formation.
We investigate on the spatial and velocity distribution of H2O along the L1448 outflow, its relationship with other tracers, and its abundance variations, using maps of the o-H2O 1_{10}-1_{01} and 2_{12}-1_{01} transitions taken with the Herschel-HIF I and PACS instruments, respectively. Water emission appears clumpy, with individual peaks corresponding to shock spots along the outflow. The bulk of the 557 GHz line is confined to radial velocities in the range pm 10-50 km/s but extended emission associated with the L1448-C extreme high velocity (EHV) jet is also detected. The H2O 1_{10}-1_{01}/CO(3-2) ratio shows strong variations as a function of velocity that likely reflect different and changing physical conditions in the gas responsible for the emissions from the two species. In the EHV jet, a low H2O/SiO abundance ratio is inferred, that could indicate molecular formation from dust free gas directly ejected from the proto-stellar wind. We derive averaged Tkin and n(H2) values of about 300-500 K and 5 10^6 cm-3 respectively, while a water abundance with respect to H2 of the order of 0.5-1 10^{-6} along the outflow is estimated. The fairly constant conditions found all along the outflow implies that evolutionary effects on the timescales of outflow propagation do not play a major role in the H2O chemistry. The results of our analysis show that the bulk of the observed H2O lines comes from post-shocked regions where the gas, after being heated to high temperatures, has been already cooled down to a few hundred K. The relatively low derived abundances, however, call for some mechanism to diminish the H2O gas in the post-shock region. Among the possible scenarios, we favor H2O photodissociation, which requires the superposition of a low velocity non-dissociative shock with a fast dissociative shock able to produce a FUV field of sufficient strength.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا